Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
A comprehensive, engaging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher delivery notes in “notes” section
Student led lesson worksheet
Teacher answer sheet
Practical Risk Assessment
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Objectives:
Students will be able to…
Describe what physical changes and chemical reactions are
Know the different signs of a chemical reaction taking place
Class different examples as either physical changes or chemical reactions
Describe the difference between a physical change and chemical reaction
This lesson contains a student led lesson sheet, with the focus being on students learning through doing, practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
This is a KS3 physics lesson covering how do draw and label basic force diagrams.
NOTE: this lesson doesn’t discuss size of force arrows, but focuses on drawing force arrows touching objects in the correct places and going in the correct direction.
This resource contains:
Teacher powerpoint (with teacher delivery notes, “I do, we do, you do” structured delivery task, plenary AFL quiz, and full work through answers animated into each slide)
Student worksheet (PDF and editable versions)
Student worksheet answers (PDF and editable versions)
Lesson objectives:
Describe how forces are represented
Identify the direction a force acts on an object
Draw and/or label force arrows on diagrams for simple example
This lesson is the fifth lesson in the “Space” topic and covers why the moon appears to change shape in our sky and the names of the phases of the moon. The lesson contains a mini-student practical, AFL mini-whiteboard tasks to assess understanding, challenge tasks for higher ability students, and a link to an online modelling software that really helps students understand the changing phases of the moon.
This lesson is designed to be easy to teach, student led and is ideal for non-specialist teachers.
This Lesson Contains:
Lesson powerpoint, including activity delivery instructions and tips for teachers, full answers, simulation link, mini-class practical (and optional alternatives), plenary task, AFL whiteboard tasks and discussion activities
Student phases of the moon worksheet (PDF) and answer sheet (PDF)
Lesson Objectives:
Name/Sketch/Describe the phases of the Moon
Explain why you see phases of the Moon
This bundle contains all the lessons you need to cover the KS3 English National Curriculum on Space.
These lessons are designed to be easy to teach (especially for non-specialists), interactive, student-led, and AfL filled/driven.
These lessons contain video links, various online simulations for students to use to aid their understanding and sense of wonder, PDF worksheets, complete PDF answer sheets, answers to all powerpoint questions (either incorperated into the powerpoint slides or in the notes sections), teacher delivery notes/tips in the “notes” sections of the powerpoints, stretch and challenge tasks for higher ability students throughout each lesson, various AfL tasks (e.g. finger voting/mini-whiteboards/true-false quizzes), and plenary tasks for each lesson.
This bundle contains the following lessons:
The Night Sky
The Solar System
Formation of the Solar System
Why we get Seasons
Phases of the Moon
Eclipses
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student led lesson worksheet
Teacher answer sheet
Risk assessment for class practicals
Printable practical instruction cards
Risk assessments for teacher demonstrations
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Various activites to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Describe what an exothermic and endothermic reactions is in terms of heat energy transfer
Give and identify examples of endothermic and exothermic reactions in everyday life
Identify reactions as exothermic or endothermic from measuring temperature changes in practical investigations
This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
This is a KS3 physics lesson covering what forces are, common forces and identifying them in simple examples, contact vs non-contact forces, and how to measure forces.
This resource contains:
Teacher powerpoint (with teacher delivery notes, practical investigation, mini-whiteboard afl quizzes, and challenge tasks throughout)
Matching forces and descriptions worksheet (PDF and editable versions)
**Lesson objectives: **
Explain what forces are
Compare different types of forces
Describe how to measure forces and give the unit of force
This is a KS3 Biology lesson covering the structure and types of joints in the body and includes the chicken leg dissection along with pre-made risk assessment and alternative written task for students who opt-out (all with answer sheets!).
This resource contains:
Teacher powerpoint
Student worksheet and answer sheet (PDF and editable word)
Alternative work (for students who do not want to do the dissection) and answer sheet (PDF and editable word)
Lesson Objectives:
Name and give examples of the types of joint found in the human body
Describe the role of joints in movement
Label the structure of a joint
Carry out the dissection of a joint
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-physics specialist teachers in mind!
This lesson teaches students about the reaction force, how forces stretch or squash an object, and Hooke’s Law in relation to springs.
This resource contains:
Lesson powerpoint - including full answers and teacher notes; practical instructions, equipment list, and safety instructions, follow up questions
Student practical worksheet (PDF and editable version)
Student graph axis (PDF and editable version) - if you don’t want to print a whole worksheet
Objectives:
Students will be able to…
Describe how forces deform objects
Describe how solid surfaces provide a support force
Investigate and use Hooke’s Law
Students will work scientifically to:
Take accurate measurements
Plot a graph
Draw a line of best fit on a graph
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student led lesson worksheet
Teacher answer sheet
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Various activites to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Identify elements in chemical formula (using a periodic table)
Count the number of atoms in formulas containing subscripts
Count the number of atoms in formulas containing multipliers
This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
This lesson contains AFL tasks which require mini-whiteboards, but can be adapted if these are not available.
A comprehensive, engaging, challenging and interactive lesson package designed with non-science/non-physics specialist teachers in mind! This lesson covers what balanced and unbalanced forces are, how to calculate resultant forces in one dimension, and the effects balanced and unbalanced forces have on the motion of an object.
This resource contains:
Lesson powerpoint - including teacher notes, interactive AFL tasks, student written task, and full answers to all activities.
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
Various activites to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Describe the difference between balanced and unbalanced forces
Explain why objects are in equilibrium
Explain the changing motion of objects
Calculating resultant forces in one dimension
This lesson is the sixth and final lesson in the “Space” topic and covers what solar and lunar total/partial eclipses are and why they happen. The lesson contains an optional class practical/demonstration of eclipses, AFL mini-whiteboard tasks to assess understanding, video task, and stretch and challenge tasks for higher ability students throughout.
This lesson is designed to be easy to teach, student led, and is ideal for non-specialist teachers.
This Lesson Contains:
Lesson powerpoint, including activity delivery instructions and tips for teachers, full answers, mini-class practical instructions, plenary task, AFL whiteboard tasks, and relevant video link
Student eclipses worksheet (PDF) and answer sheet (PDF)
Lesson Objectives:
State what a solar and lunar eclipse are
Explain how solar and lunar eclipses happen
A comprehensive, complete, engaging and challenging set of lessons and activities to teach students the basics of elements, compounds, mixtures and chemical formulas. This scheme/package is designed with non-science/non-chemistry specialist teachers in mind!
Lessons included in this bundle:
Elements and Compounds
Chemical Formulas
Counting atoms in a Formula
Pure Substances
Mixtures
Included in each lesson:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student-led lesson worksheet
Teacher answer sheet
Lesson resources contain:
In-built stretch and challenge tasks throughout
In-built scaffolded learning for lower abilities
Various AFL activities to assess progress and understanding that you can tailor to fit any class or available resources (these include “think, pair, share”, molymod activities, mini-whiteboard quizzes)
Relevant risk assessments for any practical work (updated as of March 2023)
By the end of the topic, students will:
Know what an “element” and a “compound” is
Describe the difference between an element and a compound
Know what an “atom” and a “molecule” are
Describe the difference between an atom and a molecule
Draw/make particle diagrams and models to represent elements, compounds, single atoms and molecules
Understand why scientists use chemical symbols to represent elements
Identify simple elements from their chemical symbols
Identify elements in a chemical formula
Classify chemical formulas as elements or compounds
Count the number of atoms in a basic formula
Identify elements in a chemical formula
Count the number of atoms in formulas containing subscripts
Count the number of atoms in formulas containing multipliers
Describe what a pure substance is
Identify examples of pure substances in everyday life
Identify pure substances from particle diagrams and examples
Carry out a practical investigation to identify pure substances
Describe what a mixture is
Give examples of mixtures in everyday life
Identify mixtures from particle diagrams and examples
Draw/make models representing mixtures
A 1-2 Lesson Resources on Hydrogen fuel cells, their uses, how they work and their advantages and disadvantages compared to petrol cars and electric cars.
Lesson Objectives
Describe, in basic terms, how a hydrogen fuel works
(Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell
Describe advantages and disadvantages of hydrogen fuel cells
Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles
Lesson resources include:
Lesson powerpoint with printable diagrams for students
Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them
Relevant video links
6 marker question and mark scheme
Exam question pack on fuel cells and energy
Plenary AFL multiple choice quiz and debate activity
A quick and simple student led activity designed for AQA GCSE Chemistry (Triple and Double award) explaining how crude oil is formed from plankton.
Students should put the cartoon panels in the right order, then match the correct description to each panel.
This can be a cut and stick activity or a numbering/line drawing activity.
Good for SEN and students in need of visual cues and support.
Resource download includes PDF and Editable Powerpoint versions.
This is a KS3 Biology lesson covering the function of muscles, the names of some major muscles in the human body, antagonistic muscles pairs and a practical to measure muscle fatigue. This lesson also comes with two alternative student led practical investigations.
This resource contains:
Teacher powerpoint (with teacher delivery notes, interactive plenary, challenge tasks throughout and careers links)
Student worksheet (For practical Option 1) (PDF and editable word)
Lesson Objectives:
Describe what a muscle is and give some examples
Describe how muscles cause movement in the body
Describe how antagonistic muscles control movement at a joint
Investigate the strength of muscles
This bundle contains the lessons, powerpoints and all relevant resources for teaching the Separate Science GCSE Chemistry AQA content on electrochemical cells and fuel cells.
This bundle contains 3-4 lessons of content including:
Lesson 1: What are Electrochemical Cells?
Lesson Objectives:
Describe what an electrochemical cell is and what we use it for
Describe how to make an electrochemical cell
Identify factors which affect the size of the voltage produced by an electrochemical cell
This lesson contains:
Lesson powerpoint
Student practical investigation
Teacher notes on how to deliver lesson slides/content and answers
Lesson 2: How do Electrochemical Cells Work?
Lesson Objectives:
Recall the definitions for oxidation and reduction
Identify which elements are oxidised and reduced in an electrochemical cell
(H) – write half equations for oxidation and reduction taking place in electrochemical cells
Explain why alkaline/non-rechargeable batteries eventually stop working
This lesson contains:
Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it
Student exam questions (23 marks worth) from AQA syllabus with mark scheme
Teacher notes on how to deliver lesson slides/content and answers
Lesson 3/4: What are Fuel Cells?
Lesson Objectives:
Describe, in basic terms, how a hydrogen fuel works
(Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell
Describe advantages and disadvantages of hydrogen fuel cells
Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles
Lesson resources include:
Lesson powerpoint with printable diagrams for students
Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them
Relevant video links
6 marker question and mark scheme
Exam question pack on fuel cells and energy
Plenary AFL multiple choice quiz and debate activity
Preview video of resources: https://youtu.be/WWaqwYbo6IY
A pair of GCSE Chemistry Lessons for Triple Science covering electrochemical cells and associated half equations.
Lesson 1: What are Electrochemical Cells?
Lesson Objectives:
Describe what an electrochemical cell is and what we use it for
Describe how to make an electrochemical cell
Identify factors which affect the size of the voltage produced by an electrochemical cell
This lesson contains:
Lesson powerpoint
Student practical investigation
Teacher notes on how to deliver lesson slides/content and answers
Lesson 2: How do Electrochemical Cells Work?
Lesson Objectives:
Recall the definitions for oxidation and reduction
Identify which elements are oxidised and reduced in an electrochemical cell
(H) – write half equations for oxidation and reduction taking place in electrochemical cells
Explain why alkaline/non-rechargeable batteries eventually stop working
This lesson contains:
Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it
Student exam questions (23 marks worth) from AQA syllabus with mark scheme
Teacher notes on how to deliver lesson slides/content and answers
Resource designed for distance learning - GCSE Chemistry AQA - Chemical Changes - Acids and Alkalis
Contains links to useful youtube videos and extension acitivites
Students should be able to:
Identify common acids and alkalis
Know what ions are found in acids and alkalis
Know what an indicator is and give pros and cons for each
An interactive powerpoint resource designed for distance learning from home.
Students can work their way through questions on the powerpoints and all answers are revealed within the slides.
By the end of this resource, students should be able to:
Know how an acid reacts with metals, metal oxides (bases), metal hydroxides (alkalis), and metal carbonates
Write general equations, word equations and balanced symbol equations for reactions of acids
HIGHER – Be able to write ionic equations for the reactions of acids
NOTE: Students should already have some idea how to balance an equation and work out the formula of an ionic compound before attempting this lesson.
Resource contains a PDF of a blank mechanism map for AS chemistry students studying the new Edexcel syllabus (2016 onwards).
There is a blank and completed version of the map containing all reactions, mechanisms, conditions etc… that students should know for AS Organic Chemistry (Topic 6)