I am a very experienced chemistry teacher and have produced many quality resources which have been extensively tested in the classroom. My resources aim to engage the students and lighten the planning load for the teacher. A distinctive feature is the use of unique images, often animated, to explain concepts. The resources include interactive PowerPoints, activities and games, quizzes, worksheets with answers and exam style questions. Please review my resources!
I am a very experienced chemistry teacher and have produced many quality resources which have been extensively tested in the classroom. My resources aim to engage the students and lighten the planning load for the teacher. A distinctive feature is the use of unique images, often animated, to explain concepts. The resources include interactive PowerPoints, activities and games, quizzes, worksheets with answers and exam style questions. Please review my resources!
Unique package of interactive PowerPoint and paper based activities that can be used for independent work or in the classroom. This resource covers AS (year 12) organic synthetic routes through a 15 slide interactive PowerPoint that is based on a clear chart of numbered synthetic routes, where each number is linked to a page detailing that reaction. Information given includes type of reaction, reagents and conditions and an equation, as well as key definitions. In addition most reactions have an animated mechanism or structural equation. There are links to pages describing and explaining practical techniques, where relevant.
Also included are two posters of the synthetic routes, one blank and one completed, for printing (preferably A3 size), together with a blank table for practising types of reaction and reagents and conditions. Full answers are provided.
This resource was developed primarily for the OCR AS Chemistry specification but is useful for all specifications. It relates to the following sections :
Module 4 – Core organic chemistry
Part 2 – Alcohols, haloalkanes and analysis
4.2.3 Organic synthesis
Please review!
Content covered
• AS synthetic routes
• Animated mechanisms
• Key definitions
• Heating under reflux
• Distillation
• Reaction classification
• Reagents and conditions
• Structural equations
Duration: 1-2 lessons and/or independent study
See also: A level organic synthesis - aliphatic and aromatic
/teaching-resource/organic-synthesis-aliphatic-and-aromatic-12219292
Unique package of interactive PowerPoint and paper-based activities that can be used for independenthome learning, revision or in the classroom. This resource covers AS chemistry of alcohols through a 19 slide interactive PowerPoint, which is colourful, animated and presents the information in a flexible way. Each PowerPoint slide contains links to other slides, to enable easy navigation and to emphasise links between the types of alcohol and the types of reaction.
As well as pages devoted to each of the main types of reaction (substitution, oxidation and elimination), primary, secondary and tertiary alcohols each have a page with a clear chart of numbered reactions, where each number is linked to a page detailing that reaction. Information given includes type of reaction, reagents and conditions and an equation, as well as key definitions. In addition the reactions have an animated mechanism or structural equation. There are links to pages describing and explaining practical techniques, where relevant.
Also included are two worksheets with a total of 8 pages. Full answers are provided.
This resource was developed primarily for the OCR AS Chemistry specification (year 12) but is useful for all specifications. It relates to the following sections :
Module 4 – Core organic chemistry
Part 2 – Alcohols, haloalkanes and analysis
4.2.1 Alcohols
Please review!
Content covered
• Naming alcohols
• Primary, secondary and tertiary alcohols
• Substitution reaction of alcohols
• Oxidation of alcohols
• Elimination (dehydration) reaction of alcohols
• Reactions of primary, secondary and tertiary alcohols
• Animated mechanisms
• Reaction classification
• Reagents and conditions
• Structural equations
• Key definitions
• Heating under reflux
• Distillation to prevent complete oxidation
Duration: 1-2 lessons and/or independent study
Please see also
***Mass spectrometry - A level ***
/teaching-resource/mass-spectrometry-a-level-self-study-12287938
***Infrared spectroscopy - A level ***
/teaching-resource/infrared-ir-spectroscopy-a-level-home-learning-self-study-12315096
Unique package of interactive PowerPoint and paper-based activities that can be used in the classroom or for revision or independent self-study. This resource covers AS and A2 infrared (IR) spectroscopy through a 26 slide interactive PowerPoint, which is colourful, animated and presents the information in a flexible way. Each PowerPoint slide contains links to other slides, to enable easy navigation and to emphasise links between different aspects of infrared spectroscopy.
As well as pages devoted to each of the key terms in infrared spectroscopy, the PowerPoint shows clearly how molecular vibrations occur and how they give rise to absorption peaks in the infrared spectrum. A method for interpreting infrared spectra is given, illustrated by several animated examples with spectra and structures to aid understanding of the process.
Also included is a graded worksheet with 9 pages, including problems where unknown structures are identified. Full answers are provided.
This resource was developed primarily for the OCR A level Chemistry specification but is useful for all specifications. It relates to the following sections :
AS: Module 4 – Core organic chemistry
Part 2 – Alcohols, haloalkanes and analysis
4.2.4 Analytical techniques
A2: Module 6 – Organic chemistry and analysis
Part 3 – Analysis
6.3.2 Spectroscopy (Combined techniques)
Please review!
Content covered
• introduction to spectroscopy linked to the electromagnetic spectrum
• meaning of wavenumber and transmittance
• molecular vibrations
• bond stretching
• fingerprint region of spectrum
• types and shapes of peaks
• infrared and global warming
• the greenhouse effect and greenhouse gases
• interpreting the infrared spectrum
• examples of IR spectra with animated explanation linking peaks to structure
• uses of infrared spectroscopy
Duration: 1-2 lessons and/or independent study
Links
See also Mass spectrometry A level home learning
/teaching-resource/mass-spectrometry-a-level-home-learning-12287938
Free resource - identifying compounds from infrared and mass spectra
/teaching-resource/identifying-compounds-from-infrared-and-mass-spectra-a-level-12325481
Unique package of interactive PowerPoint and paper-based activities that can be used for independent home learning, revision or in the classroom. This resource covers AS and A2 mass spectrometry through a 25 slide interactive PowerPoint, which is colourful, animated and presents the information in a flexible way. Each PowerPoint slide contains links to other slides, to enable easy navigation and to emphasise links between different aspects of mass spectrometry.
As well as pages devoted to each of the key terms in mass spectrometry, the PowerPoint shows clearly how fragmentation occurs and how the breakage of a particular bond can result in the fragment of a particular mass. A method for interpreting mass spectra is given, illustrated by several examples with animated spectra and structures to aid understanding of the process.
Also included is a graded worksheet with 7 pages, including problems where an unknown structure is identified. Full answers are provided.
This resource was developed primarily for the OCR A level Chemistry specification but is useful for all specifications. It relates to the following sections :
AS: Module 4 – Core organic chemistry
Part 2 – Alcohols, haloalkanes and analysis
4.2.4 Analytical techniques
A2: Module 6 – Organic chemistry and analysis
Part 3 – Analysis
6.3.2 Spectroscopy (Combined techniques)
Please review!
Content covered
• animated diagram and description of a mass spectrometer
• meaning of m/z
• relative intensity
• base peak
• molecular ion
• M+1 peak
• fragments
• interpreting the mass spectrum
• mass spectrum of ethanol
• animations of formation of fragments from ethanol
• summary of fragments for ethanol
• examples of mass spectra with animated explanation linking peaks to structure
Duration: 1-2 lessons and/or independent study
See also Chemistry of alcohols – AS home learning
/teaching-resource/chemistry-of-alcohols-as-self-study-12273938
Infrared spectroscopy – A level home learning
/teaching-resource/infrared-ir-spectroscopy-a-level-home-learning-self-study-12315096
This complete year 12 lesson on alkenes covers part of OCR section 4.1.3 (Alkenes). Content includes structure and reactivity of alkenes, the nature of the C=C double bond, addition reactions of alkenes, the electrophilic addition mechanism and Markownikoff’s rule. The resource features a 47 slide animated PowerPoint that illustrates and explains the concepts in a lively and visual way; it includes several interactive slides that link to other slides to allow a non-linear progression through the concepts. There is a starter and a plenary activity as well as a 16 page workbook. Exam tips and answers to the exercise are provided. Ideal for the classroom or blended learning, this resource could be used as an introduction to the topic, or for revision, extension or consolidation.
This lesson is part of a series covering the OCR AS Chemistry specification and relates to the following part of the specification:
Module 4 – Core organic chemistry
Part 1 – Basic concepts and hydrocarbons
4.1.3 − Alkenes
Content covered:
Structure and reactivity of alkenes
The nature of the double bond – sigma and pi bonds
Explanation of restricted rotation around C=C
Shape of ethene in terms of electron pair repulsion theory
Addition reactions of alkenes
Reactions of ethene and propene including addition of halogens, steam, hydrogen halides and hydrogen
Test for alkenes with aqueous bromine
Catalytic addition of hydrogen - mechanism
Margarine manufacture
Definition of electrophile
Electrophilic addition mechanism
Addition of HX to unsymmetrical alkenes - Markownikoff’s rule and explanation
Duration: 1-2 lessons
Please review!
Links
Previous lesson: topic 46 – Reactions of alkanes
/teaching-resource/reactions-of-alkanes-ocr-as-chemistry-12987021
Next lesson: topic 48 – Addition polymers (in preparation)
Lesson on naming hydrocarbons:
/teaching-resource/naming-hydrocarbons-with-quiz-as-12243823
Lesson on isomerism, including E/Z isomerism of alkenes:
/teaching-resource/isomerism-ocr-as-chemistry-12634065
Unique package of interactive PowerPoint and paper-based activities that can be used for independent self-study, revision or in the classroom. These resources cover AS and A2 infrared (IR) spectroscopy and mass spectrometry through two interactive PowerPoint presentations, which are colourful, animated and present the information in a flexible way. Each PowerPoint slide contains links to other slides, to enable easy navigation and to emphasise links between different aspects.
A method for interpreting infrared and mass spectra is given, in each case illustrated by animated examples with spectra and structures to aid understanding of the process.
Also included are two graded worksheet including problems where unknown structures are identified.
Full answers to exercises are provided.
This resource was developed primarily for the OCR A level Chemistry specification but is useful for all specifications. It relates to the following sections :
AS: Module 4 – Core organic chemistry
Part 2 – Alcohols, haloalkanes and analysis
4.2.4 Analytical techniques
A2: Module 6 – Organic chemistry and analysis
Part 3 – Analysis
6.3.2 Spectroscopy (Combined techniques)
Please review!
Link
Identifying compounds from infrared and mass spectra (A level)
/teaching-resource/identifying-compounds-from-infrared-and-mass-spectra-a-level-12325481
This complete year 12 lesson on intermolecular forces includes induced dipole-dipole interactions (London dispersion forces), permanent dipole-dipole forces and hydrogen bonding. For each type of intermolecular force there is an explanation of how they arise, what factors affect them and how they affect physical properties. The resource features a 58 slide animated PowerPoint that illustrates the concepts in a lively and visual way and includes a starter, learning checks, animations, clearly explained examples and a plenary multiple choice quiz. A 13 page worksheet and answers to the exercises are provided.
This resource is part of a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 2 – Foundations in chemistry
Part 2 – Electrons, bonding and structure
2.2.2 Bonding and structure
Content covered:
• What are intermolecular forces?
• Strengths of bonds and intermolecular forces
• Types of intermolecular forces
• Induced dipole-dipole interactions (London (dispersion) forces)
• How London forces arise
• Factors affecting strength of London forces
• Permanent dipole-dipole interactions
• How permanent dipole-dipole interactions arise
• How intermolecular forces affect properties
• Hydrogen bonding
• What’s special about hydrogen bonds
• Effects of hydrogen bonds on properties
• Special properties of water
• Summary of intermolecular forces
• Predicting the type of intermolecular forces
Duration: 1 lesson
Please review!
Links
Previous topic: Topic 18 – Electronegativity and bond polarity OCR AS Chemistry (free resource) /teaching-resource/electronegativity-and-bond-polarity-ocr-as-chemistry-12888524
Next topic: Topic 20 Structure and bonding
/teaching-resource/structure-and-bonding-ocr-as-chemistry-12933603
This complete year 12 lesson on reactions of alkanes covers part of OCR sections 4.1.2 (Alkanes). Content covered includes reactivity of alkanes, combustion reactions and substitution by halogens including the radical substitution mechanism. The resource features a 38 slide animated PowerPoint along with a 13 page workbook. There is a starter activity and a plenary activity with timer. Exam tips and answers to the exercise are provided. Ideal for the classroom or blended learning, this resource could be used as an introduction to the topic, or for revision, extension or consolidation.
This lesson is part of a series covering the OCR AS Chemistry specification and relates to the following part of the specification:
Module 4 – Core organic chemistry
Part 1 – Basic concepts and hydrocarbons
4.1.2 − Alkanes
Content covered:
Reactivity of alkanes
Combustion of alkanes – complete and incomplete
Balancing combustion equations
Radicals and dot-and-cross diagrams
Radical chain reactions
Radical substitution of alkanes by halogens
Mechanism including initiation, propagation and termination
Limitations to the use of radical substitution in synthesis of halogenoalkanes
Duration: 1 lesson
Please review!
Links
Previous lesson: topic 45 – Introduction to alkanes (free resource)
/teaching-resource/introduction-to-alkanes-ocr-as-chemistry-12654263
Next lesson: topic 47 – Alkenes
/teaching-resource/alkenes-ocr-as-chemistry-13033236
Lesson on naming hydrocarbons:
/teaching-resource/naming-hydrocarbons-with-quiz-as-12243823
Lesson on isomerism, including further information on shapes of alkanes and alkenes:
/teaching-resource/isomerism-ocr-as-chemistry-12634065
This complete year 12 lesson on organic reagents and types of reaction covers part of OCR section 4.1.1 (Basic concepts of organic chemistry). Covering types of bond fission, reagents, and an introduction to reaction mechanisms, it features a 47 slide animated PowerPoint along with a 10 page workbook. There is a starter activity and a multiple choice quiz is also included as a plenary. Exam tips and answers to all exercises are provided. Ideal for the classroom or blended learning, this resource could be used as an introduction to the topic, or for revision, extension or consolidation.
This lesson is part of a series covering the OCR AS Chemistry specification and relates to the following part of the specification:
Module 4 – Core organic chemistry
Part 1 – Basic concepts and hydrocarbons
4.1.1 Basic concepts of organic chemistry
Content covered:
• Ways of breaking covalent bonds
o Homolytic fission
o Heterolytic fission
• Types of organic reagents and their reactions
o Nucleophiles
o Electrophiles
o Radicals
• Introduction to mechanisms
• Curly arrows
• Types of reaction
o Addition
o Substitution
o Elimination
• Classification of reactions
Duration: 1 lesson
Please review!
Links
Previous lesson: topic 43 – Isomerism
/teaching-resource/resource-12634065
Next lesson: topic 45 – Introduction to alkanes
/teaching-resource/introduction-to-alkanes-ocr-as-chemistry-12654263
This bundle is ideal for classroom or home learning and covers all of the OCR A level chemistry specification section 3.2.1 − enthalpy changes. The energetics topics covered are enthalpy changes, experimental determination of enthalpy changes, bond enthalpies and Hess’ Law. Each topic includes a fully interactive PowerPoint including starter, group activities, questions and plenary along with a worksheet. Answers to all exercises are provided. Some of the resources include a PowerPoint quiz.
This bundle is part of a series covering the OCR AS Chemistry specification and relates to the following section:
Module 3 – Periodic table and energy / Part 2 – Physical chemistry / 3.2.1 Enthalpy changes
Content covered:
Enthalpy changes
• What is enthalpy
• Law of conservation of energy
• Enthalpy change
• Enthalpy profile diagrams
• System and surroundings
• Exothermic and endothermic reactions and examples
• Activation energy
• Standard enthalpy changes
• Standard conditions
• Definitions of enthalpy changes
• Simple calculations involving enthalpy changes
Experimental determination of enthalpy changes
• Energy exchange with the surroundings - heat loss in a chemical system = heat gain by surroundings
• Temperature scales
• Determining enthalpy changes using calorimetry
• Calculations involving q = mc∆T .
• Determining enthalpy changes in solution
• Determining enthalpy of combustion
• Errors associated with calorimetry experiments and how to minimise them
• Cooling curves and how to find the temperature rise
• Thermometric titration
Bond enthalpies
• Making covalent bonds (exothermic) and breaking covalent bonds (endothermic)
• Overall enthalpy change linked to relative enthalpies of breaking and making bonds – enthalpy profile diagram
• Average bond enthalpies and why they differ from actual bond enthalpies
• Factors affecting average bond enthalpies
• Calculations involving bond enthalpies
• Limitations of bond enthalpy calculations
• Plenary discussion about why there is a constant increase in the enthalpy change of combustion of alcohols for each CH2 group added
Hess’ Law
• Hess’ Law
• Indirect determination of enthalpy changes
• Enthalpy cycles
• Calculating enthalpy changes from enthalpy changes of combustion
• Calculating enthalpy changes from enthalpy changes of formation
• Summary of types of enthalpy calculation
• Calculating enthalpy changes from unfamiliar enthalpy cycles
Links
Next lesson: Topic 29 – Rates of reaction and collision theory (in preparation)
Free resource - standard form, decimal places and significant figures
/teaching-resource/resource-12405507
This bundle is ideal for classroom or home learning and covers the history of the periodic table, the features of the modern periodic table, the periodicity of ionisation energies and melting points as well as the properties of group 2 elements and compounds, the halogens and their compounds and qualitative analysis. It includes all of the OCR A level chemistry specification section 3.1.
Each topic includes a fully interactive PowerPoint including starter, group activities, questions and plenary along with a worksheet. Answers to all exercises are provided. Some of the resources include a PowerPoint quiz.
This bundle is part of a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 3 – The Periodic table and energy
Part 1 –The Periodic Table
3.1.1 Periodicity
3.1.2 Group 2
3.1.3 The halogens
3.1.4 Qualitative analysis
Content covered:
Periodic table past and present
• The history of the periodic table, including Newlands’ and Mendeleev’s contributions
• The structure of the modern periodic table – periods, groups and blocks
• Relationship between electron configuration and the periodic table
• Periodicity – the variation in properties when plotted against atomic number
• Periodicity and metallic character
• Metal and non-metals
Periodicity of ionisation energies and melting points
• First ionisation energy – definition
• Factors affecting ionisation energies: nuclear charge, atomic radius and shielding
• Explanation of shielding
• Successive ionisation energies
• Predicting group from successive ionisation energies
• Periodicity of first ionisation energies
• Trends across a period and down a group
• Explanations of small decreases from group 2 to group 3 and from group 5 to group 6
• Periodicity of structure of elements: giant metallic, giant covalent and simple molecular structures
• Periodicity of melting points and explanation in terms of structure.
Group 2
• Structure and physical properties of group 2 elements
• Electron configuration and formation of ions
• First ionisation enthalpy and reactivity
• Redox reactions of group 2 metals with oxygen, water and acids
• Properties of group 2 compounds
• Group 2 oxides and hydroxides – reactions with acids
• Group 2 oxides – reaction with water
• Solubility and alkalinity of group 2 hydroxides
• Reactions of group 2 carbonates with acid
• Uses of group 2 compounds
The halogens
• Structure and physical properties of group 17 elements
• Electron configuration and formation of ions
• Redox reactions of halogens
• Reactivity of halogens
• Displacement reactions
• Disproportionation reactions of the halogens, including production of bleach
• Benefits and hazards of treating drinking water with chlorine
• Precipitation reactions of aqueous halide ions with aqueous silver nitrate
• Use of silver nitrate as a test for aqueous halide ions
Qualitative analysis
• Precipitation and acid-base reactions
• Tests for carbon dioxide and ammonia
• Tests for anions including carbonate, sulfate, chloride, bromide and iodide ions
• Sequence of tests for anions, with reasons
• Analysing mixtures of anions
• Tests for cations – ammonium ion
Links
Next lesson: Topic 25 – enthalpy changes
/teaching-resource/enthalpy-changes-ocr-as-chemistry-12509439
Next bundle: Enthalpy changes bundle
/teaching-resource/enthalpy-changes-bundle-12608495
This complete year 12 lesson on structural isomers and stereoisomers covers part of OCR sections 4.1.1 (Basic concepts of organic chemistry) and 4.1.3 (Alkenes). It features a 58 slide animated PowerPoint as well as a starter activity and plenary along with a 16 page workbook. There are several activities involving model building and a multiple choice quiz is also included as a learning check. Exam tips and answers to all exercises are provided. Ideal for the classroom or blended learning, this resource could be used as an introduction to the topic, or for revision, extension or consolidation.
Note: this resource does not cover optical isomerism. This will be dealt with in a later A2 topic.
This lesson is part of a series covering the OCR AS Chemistry specification and relates to the following part of the specification:
Module 4 – Core organic chemistry
Part 1 – Basic concepts and hydrocarbons
4.1.1 Basic concepts of organic chemistry and 4.1.3 Alkenes
Content covered:
• Shapes of alkanes (with model building)
• Definitions of structural isomers, stereoisomers, E/Z isomers and cis-trans isomers
• Classification of isomers with examples
• Structural isomers including chain, position and functional group isomers
• Shapes of alkenes (with model building)
• Restricted rotation around the C=C double bond
• Stereoisomers – E/Z and cis-trans isomers
• Animated illustrations of E/Z isomers
• Criteria for E/Z isomerism and for cis-trans isomerism with examples and learning check
• Cahn-Ingold-Prelog rules for naming E/Z isomers with examples
Duration: 1 lesson
Please review!
Links
Previous lesson: topic 42 – Functional groups – names and formulae - OCR AS Chemistry
/teaching-resource/resource-12624555
Next lesson: topic 44 – Organic reagents and types of reaction - OCR AS Chemistry
/teaching-resource/organic-reagents-and-types-of-reaction-ocr-as-chemistry-12643937
This complete year 12 resource on acid-base titrations includes the practical procedure and calculations for titrations as well as details of evaluating experiments. It features a 28 slide interactive PowerPoint that illustrates the concepts in a lively, visual and systematic way. The resource includes a starter, learning checks, clearly explained examples of calculations, a practical activity with evaluation and a plenary. A 20 page worksheet includes a variety of structured and unstructured calculations and answers to all exercises. Ideal for the classroom or blended learning, this resource could be used to present the topic, or for revision, extension or consolidation.
This lesson is part of a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 2 – Foundations in chemistry
Part 1 – Atoms and reactions
2.1.4 – Acids (part)
Content covered:
• Titration and uses
• Standard solution
• Glassware and procedure for titration with detailed hints for technique
• Reading burette
• Recording titration results and calculating the mean
• Titration calculations
• Examples of structured and unstructured calculations
• Revision of calculations involving masses and volumes
• Practical titration activity
• Evaluation of titration experiment
• Uncertainties and calculating % uncertainties
• Procedural errors
Duration: 2 lessons
Please review!
Links
Previous topic: Topic 11 – Acids and bases (free resource)
/teaching-resource/acids-and-bases-ocr-as-chemistry-12747201
Next topic: Topic 13 – Redox
/teaching-resource/redox-ocr-as-chemistry-12409890
Related topics
Topic 8 − Moles and concentration of solutions
/teaching-resource/moles-and-concentration-of-solutions-ocr-as-chemistry-12391026
Topic 9 – Moles and reactions
/teaching-resource/moles-and-reactions-ocr-as-chemistry-12404411
Bundle − Moles, masses, concentrations, gas volumes and reactions
/teaching-resource/moles-masses-concentrations-gas-volumes-and-reactions-12404451
This bundle is ideal for classroom or home learning and covers the whole of the OCR A level chemistry specification sections 2.1.4 – Acids and 2.1.5 − Redox
Each topic includes a fully interactive PowerPoint including starter, group activities, questions and plenary along with a worksheet and a lesson plan. Answers to all exercises are provided. Some of the resources include a PowerPoint quiz. A practical activity on titration is also included.
This bundle is the third in a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 2 – Foundations in chemistry
Part 1 – Atoms and reactions
2.1.4 – Acids (whole)
2.1.5 Redox (whole)
Content covered
Acids and bases
• Definitions of acid, base, alkali and salt
• Formulae of acids, bases, alkalis and salts
• The relationship between bases and alkalis
• The pH scale
• Everyday examples of acids and bases
• Weak and strong acids
• Diprotic acids
• Writing and balancing neutralization reactions (including acid-carbonate reactions)
• Ionic equations
Acid-base titrations
• Titration and uses
• Standard solution
• Glassware and procedure for titration with detailed hints for technique
• Reading burette
• Recording titration results and calculating the mean
• Titration calculations
• Examples of structured and unstructured calculations
• Revision of calculations involving masses and volumes
• Practical titration activity
• Evaluation of titration experiment
• Uncertainties and calculating % uncertainties
• Procedural errors
Redox
• Redox definition in terms of electron transfer
• Oxidation numbers and how to calculate them
• Oxidation number in chemical names
• Redox definition in terms of oxidation number
• Using oxidation numbers to identify redox reactions and determine what has been oxidised and reduced
• Oxidising and reducing agents
• Disproportionation as oxidation and reduction of the same element
Links
Previous bundle:
Moles, masses, concentrations, gas volumes and reactions
/teaching-resource/moles-masses-concentrations-gas-volumes-and-reactions-12404451
Next bundle:
Electrons and bonding
/teaching-resource/electrons-and-bonding-ocr-as-chemistry-12605443
Next topic
Topic 14 – Electron configuration – shells, sub-shells and orbitals
/teaching-resource/electron-configuration-shells-sub-shells-and-orbitals-ocr-as-chemistry-12207312
This complete year 12 lesson on Hess’s Law covers part of OCR section 3.2.1 (Enthalpy changes). It includes the following energetics topics: Hess’ Law, enthalpy cycles and their use in calculating enthalpy changes indirectly. It features a 39 slide animated PowerPoint that illustrates the concepts in a lively, visual and systematic way and includes a starter, learning checks, clearly explained examples, including example calculations ,and a plenary activity. An 18 page worksheet and answers to the exercises are provided.
This resource is part of a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 3 – Periodic table and energy
Part 2 – Physical chemistry
3.2.1 – Enthalpy changes
Content covered:
• Hess’ Law
• Indirect determination of enthalpy changes
• Enthalpy cycles
• Calculating enthalpy changes from enthalpy changes of combustion
• Calculating enthalpy changes from enthalpy changes of formation
• Summary of types of enthalpy calculation
• Calculating enthalpy changes from unfamiliar enthalpy cycles
Duration: 2 lessons
Please review!
Links
Previous topic: Topic 27 – Bond enthalpies OCR AS chemistry
/teaching-resource/resource-12595300
Next topic: Topic 29 – Rates of reaction and collision theory
/teaching-resource/measuring-rate-of-reaction-ocr-as-chemistry-13180177
Free resource - standard form, decimal places and significant figures
/teaching-resource/resource-12405507
This bundle is ideal for classroom or home learning and covers all of the OCR A level chemistry specification sections 3.2.2 and 3.2.3 − reaction rates and chemical equilibrium. The topics covered are measuring reaction rates, collision theory, factors affecting rates of reaction, dynamic equilibrium, le Chatelier’s principle, factors affecting position of equilibrium, industrial chemical processes and the equilibrium constant Kc. Each topic includes a fully interactive PowerPoint including starter, activities, questions and plenary along with a worksheet. Answers to all exercises are provided. Some of the resources include a PowerPoint quiz.
This bundle is part of a series covering the OCR AS Chemistry specification and relates to the following section:
Module 3 – Periodic table and energy
Part 2 – Physical chemistry - 3.2.2 Reaction rates and 3.2.3 Chemical equilibrium
Content covered:
Measuring rate of reaction
• Gradients
• Definition , calculation and units of rate of reaction
• Measuring rate of reaction experimentally using volume of gas, loss of mass or change in concentration
• Determining rate from a graph of concentration (or gas volume or mass loss) against time using tangents
• Smooth curve versus dot-to-dot
Collision theory and factors affecting rate of reaction
• Factors affecting rate of reaction
• The collision theory of reactions
• Activation energy and enthalpy profile diagrams
• Effect of concentration and pressure on rate and explanation in terms of collision theory
• Effect of temperature and catalysts on rate
• Catalysts – how they work and their advantages
• Using Boltzmann distribution curves and activation energy to explain the effect of temperature and catalysts on rate
Introduction to chemical equilibrium
• Static vs dynamic equilibrium
• Irreversible and reversible reactions
• Meaning of closed system
• Examples of dynamic equilibrium and how it is reached
• Definition of dynamic equilibrium
• How rates vary with time (graph of rate against time)
• How concentrations vary with time (graphs of concentration against time)
• Position of equilibrium – illustrated by concentration-time graphs
• Yield of reaction
Le Chatelier’s principle and equilibrium constant Kc
• Le Chatelier’s principle
• Effect of changing concentration, pressure or temperature on position of equilibrium, predicted and explained using le Chatelier’s principle
• Practical examples with colour changes
• Effect of adding a catalyst on rate of reaction and position of equilibrium
• Position of equilibrium and yield
• Choice of conditions in the chemical industry - factors considered including yield, rate , costs and safety
• How far, how fast?
• The Haber process as example of an industrial process
• The equilibrium constant Kc
• The equilibrium law
• Writing expressions for Kc and calculating values.
Links
Next lesson: – Introduction to organic chemistry (free resource)
Next bundle: Basic concepts of organic chemistry
/teaching-resource/basic-concepts-of-organic-chemistry-ocr-as-chemistry-12643964
This bundle is ideal for classroom or home learning and covers all of the OCR A level chemistry specification section 4.1.1 – basic concepts of organic chemistry, as well as isomerism from section 4.1.3 (Alkenes).
The topics covered are:
introduction to organic chemistry
naming hydrocarbons
quiz – a question of naming alkanes
functional groups – names and formulae
isomerism
organic reagents and types of reaction
Each topic includes a fully interactive PowerPoint including starter, group activities, questions and plenary along with a worksheet. Answers to all exercises are provided. Some of the resources include a PowerPoint quiz.
This bundle is part of a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 4– Core organic chemistry
Part 2 – Basic concepts and hydrocarbons
4.1.1 Basic concepts of organic chemistry (all) and 4.1.3 Alkenes (part)
Content covered:
Introduction to organic chemistry
• Why carbon is special
• Bonding in organic compounds
• Different types of formulae
• Types of organic compounds
• Functional groups and homologous series
Naming hydrocarbons
• Application of IUPAC rules of nomenclature for systematically naming organic compounds
• Naming alkanes and cycloalkanes
• Naming branched alkanes
• Naming alkenes and branched alkenes
Quiz – A Question of naming alkanes
Functional groups – names and formulae
• Application of IUPAC rules of nomenclature for systematically naming organic compounds
• Practice naming organic compounds including those with functional groups
• Revision of empirical and molecular formula and how to calculate them
• Formulae of compounds with functional groups
Displayed formula
Structural formula
Skeletal formula
Isomerism
• Shapes of alkanes (with model building)
• Definitions of structural isomers, stereoisomers, E/Z isomers and cis-trans isomers
• Classification of isomers with examples
• Structural isomers including chain, position and functional group isomers
• Shapes of alkenes (with model building)
• Restricted rotation around the C=C double bond
• Stereoisomers – E/Z and cis-trans isomers
• Animated illustrations of E/Z isomers
• Criteria for E/Z isomerism and for cis-trans isomerism with examples and learning check
• Cahn-Ingold-Prelog rules for naming E/Z isomers with examples
Organic reagents and types of reaction
• Ways of breaking covalent bonds
Homolytic fission
Heterolytic fission
• Types of organic reagents and their reactions
Nucleophiles
Electrophiles
Radicals
• Introduction to mechanisms
• Curly arrows
• Types of reaction
Addition
Substitution
Elimination
• Classification of reactions
Links
Next lesson: Topic 45 - Introduction to alkanes
/teaching-resource/introduction-to-alkanes-ocr-as-chemistry-12654263
This introduction to standard form, decimal places and significant figures features a 14 slide interactive PowerPoint including explanations, examples and practice exercises. Answers to all exercises are given.
This resource is complementary to the mathematical topics of chemistry A level in years 12 and 13, for example; amount of substance, concentrations, volumes of gases as well as equilibrium constants, energy changes and rates of reaction.
Content covered:
• Standard form
• Decimal places and how to reduce them
• Significant figures and how to reduce them
• How to choose an appropriate number of significant figures in an answer
Links
Topic 5 – Amount of substance and the mole
/teaching-resource/amount-and-moles-ocr-as-chemistry-12190652
Topic 6 – Determining formulae
/teaching-resource/determining-formulae-ocr-as-chemistry-12347977
Topic 7 – Moles and gas volumes
/teaching-resource/moles-and-gas-volumes-ocr-as-chemistry-12336053
Topic 8 – Moles and concentrations of solutions
/teaching-resource/moles-and-concentration-of-solutions-ocr-as-chemistry-12391026
Bundle – Moles, masses, concentration, gas volumes and reactions
/teaching-resource/moles-masses-concentrations-gas-volumes-and-reactions-12404451
This complete year 12 resource on acids, bases, alkalis, neutralization and salts includes formulae of acids, bases, alkalis and salts, equations for neutralization reactions and ionic equations. It features a 39 slide interactive PowerPoint that illustrates the concepts in a lively, visual and systematic way and includes a starter, learning checks, clearly explained examples of writing and balancing equations, and a quick quiz as plenary. A 17 page worksheet and answers to all exercises are provided. Ideal for the classroom or blended learning, this resource could be used to present the topic, or for revision, extension or consolidation.
This lesson is part of a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 2 – Foundations in chemistry
Part 1 – Atoms and reactions
2.1.4 – Acids (part)
Content covered:
• Definitions of acid, base, alkali and salt
• Formulae of acids, bases, alkalis and salts
• The relationship between bases and alkalis
• The pH scale
• Everyday examples of acids and bases
• Weak and strong acids
• Diprotic acids
• Writing and balancing neutralization reactions (including acid-carbonate reactions)
• Ionic equations
Duration: 1-2 lessons
Please review!
Links
Previous topic:
Topic10 – Percentage yield and atom economy
/teaching-resource/percentage-yield-and-atom-economy-ocr-as-chemistry-12745344
Next topic:
Topic 12 – Acid-base titrations
/teaching-resource/acid-base-titrations-ocr-as-chemistry-12749636
Related topic:
Topic 4 - Formulae and equations
/teaching-resource/formulae-and-equations-ocr-as-chemistry-12186723
This complete lesson on introducing organic chemistry is ideal for classroom home learning features a 46 slide interactive, animated PowerPoint as well as a starter activity and plenary along with a 10 page workbook and a lesson plan. Exam tips and answers to all exercises are provided.
This lesson is part of a series covering the OCR AS Chemistry specification and relates to the following sections:
Module 4 – Core organic chemistry
Part 1 – Basic concepts and hydrocarbons
4.1.1 Basic concepts of organic chemistry
Please review!
Content covered:
• Why carbon is special
• Bonding in organic compounds
• Different types of formulae
• Types of organic compounds
• Functional groups and homologous series
Duration: 1 lesson
Links
Next lesson: Topic 41 - Naming hydrocarbons
/teaching-resource/naming-hydrocarbons-ocr-as-chemistry-12242016