Hero image

Teach Science & Beyond

Average Rating4.77
(based on 37 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

161k+Views

98k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Target Stickers
TeachScienceBeyondTeachScienceBeyond

Target Stickers

(0)
These target stickers enables teachers and students to track their progress in science or other subjects on a weekly or biweekly bias. These stickers should be stuck in students’ books so they can take responsibility of their own learning and work progress. Teachers can easily see which students are not meeting targets and therefore requires intervention strategies
PAG 2.1 Determining the concentration of hydrochloric acid
TeachScienceBeyondTeachScienceBeyond

PAG 2.1 Determining the concentration of hydrochloric acid

(0)
A complete lesson including risk assessment and post practical analysis on AS Chemistry PAG 2.1 :Determination of concentration of hydrochloric acid Students will learn how to: Plan an acid-base titration practical Assess the risks of an acid-base titration practical How to use a range of practical equipment safely and accurately How to record observations How to analyse titration results to determine an unknown concentration Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry Revision:Chemical Reactions
TeachScienceBeyondTeachScienceBeyond

AS Chemistry Revision:Chemical Reactions

(0)
3 revision documents summarising the equations and conditions students need to remember for the following chapters in AQA AS Chemistry: The halogens Group 2 metals Alkanes Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Ionisation Energy (Part 1)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Ionisation Energy (Part 1)

(0)
A structured KS5 lesson (Part 1 of 2) including starter activity and practice questions with answers on ionisation energy By the end of this lesson KS5 students should be able to: To define the term ‘first ionisation energy’ and successive ionisation energies To describe the factors affecting ionisation energy To explain the trend in successive ionisation energies of an element Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Atomic Orbitals
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Atomic Orbitals

(0)
A structured KS5 lesson including starter activity and AfL work tasks Electrons and Atomic Orbitals By the end of this lesson KS5 students should be able to: To know that atomic orbitals are a region around the nucleus that occupy electrons To illustrate the shape of s, p and d orbitals To describe the number of orbitals that make up the s, p and d sub shells and the number of electrons that fill the sub shells To deduce the electronic configuration of atoms and ions in the s and p-block The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Important Note For Teachers: A lesson on electronic configuration of d-block elements is available as a separate lesson in my shop Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Ions and the Periodic Table
TeachScienceBeyondTeachScienceBeyond

Ions and the Periodic Table

(0)
A structured KS5 lesson including starter activity and AfL work tasks Ions & The Periodic Table. All tasks have answers included. By the end of this lesson KS5 students should be able to: To predict the ionic charge of ions based on the position of the element in the periodic table To recall the names of common atomic and molecular ions To be able write the formula of ionic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Polar and Non-Polar Molecules
TeachScienceBeyondTeachScienceBeyond

Polar and Non-Polar Molecules

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Polar and Non-Polar Molecules By the end of this lesson KS5 students should be able to: LO1: To describe the difference between polar and non-polar molecules LO2: To explain why non-polar molecules can contain polar bonds LO3: To predict whether molecules are polar or non-polar Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
How Buffer Solutions Work (OCR)
TeachScienceBeyondTeachScienceBeyond

How Buffer Solutions Work (OCR)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on ** Explaining How Buffer Solutions Work** (Suitable for the OCR specification) By the end of this lesson KS5 students should be able to: To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base To describe how a buffer solution is formed using weak acids, salts and strong alkalis To explain the role of the conjugate acid-base pair in an acid buffer solution such as how the blood pH is controlled by the carbonic acid–hydrogencarbonate buffer system Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
KS3 Chemistry:  States of Matter
TeachScienceBeyondTeachScienceBeyond

KS3 Chemistry: States of Matter

(0)
A complete lesson including starter activity, main work task and (all answers included) on the States of Matter (KS3 chemistry) This lesson is a great introduction to the Particle Model Topic in KS3 Chemistry Students are introduced to the topic with a starter activity on solids, liquids and gases By the end of the lesson students should be able to: State examples of solids, liquids and gases Describe solids, liquids and gases in terms of the particle model Compare the different properties of solids, liquids and gases based on the particle model Teacher is able to assess students understanding and progress through an interactive AfL task which can completed using A,B,C cards or on mini white boards Students then complete a 20-30 minutes main work task (answers are provided for student self or peer assessment) Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Moles and Equations
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Moles and Equations

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on reacting masses (moles and chemical equations) By the end of the lesson students should be able to: Know how to balance symbol equations Calculate the moles of reactants or products based on chemical equations and mole ratios Calculate the masses of reactants used or products formed based on chemical equations and mole ratios Students will be able to take rich notes on reacting masses, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding of the how to balanced equations and calculate reacting masses from chemical equations by carrying our mini AfL tasks either on mini white boards or in students’ books The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Relative Masses
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Relative Masses

(0)
A complete lesson including starter activity, mini Afl tasks and main work task with answers for KS5 lesson on relative masses ( relative atomic mass, relative molecular mass and relative formula mass) By the end of the lesson students should be able to Define the terms relative atomic mass, relative formula mass and relative molecular mass Calculate the relative formula mass and relative molecular mass of compounds and molecules Students will be able to take rich notes on relative atomic mass, relative molecular mass and relative formula mass throughout the lesson The teacher will be able to quickly assess students’ understanding of the relative mass terms by carrying out mini afl tasks either on mini white boards or in their books The lesson ends with practice exam style questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Combined Science: Variation (Biology)
TeachScienceBeyondTeachScienceBeyond

GCSE Combined Science: Variation (Biology)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS4 GCSE lesson on variation. Main work task is differentiated with sentence starters for the 6 mark exam question By the end of the lesson students should be able to: Identify variation causes by genes and by the environment Describe how variation contributes to an organism’s survival Explain the mechanisms of genetic variation Students will be able to take rich notes on variation, building on their KS3 knowledge on this topic The teacher will be able to quickly assess students’ understanding of variation by carrying our mini AfL questions using A,B,C cards or mini white baords The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Physics: Forces, Mass and Weight
TeachScienceBeyondTeachScienceBeyond

GCSE Physics: Forces, Mass and Weight

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS4 GCSE lesson on forces, mass and weight. By the end of the lesson students should be able to: Describe what a force is Explain the difference between contact and non-contact forces Explain the difference between mass and weight Students will be able to take rich notes on forces, mass and weight on their prior KS3 knowledge on this topic The teacher will be able to quickly assess students’ understanding of forces, mass and weight by carrying our mini AfL questions The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided, followed by a plenary quiz Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Physics: Internal Energy
TeachScienceBeyondTeachScienceBeyond

GCSE Physics: Internal Energy

(0)
A whole lesson including starter activity, AfL work tasks and main work task all with answers on Internal Energy By the end of this lesson KS4 students should be able to: Describe the particle model of matter Understand what is meant by the internal energy of a system Describe the effect of heating on the energy stored within a system The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson
GCSE Physics: Specific Heat Capacity
TeachScienceBeyondTeachScienceBeyond

GCSE Physics: Specific Heat Capacity

(0)
A whole lesson including starter activity, AfL work tasks and main work task all with answers on Specific Heat Capacity. Suitable for AQA GCSE Physics and Combined Science (both higher and foundation) By the end of this lesson KS4 students should be able to: Describe the effect of increasing the temperature of a system in terms of particles State the factors that are affected by an increase in temperature of a substance Calculate specific heat capacity The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AQA GCSE Physics:  Particle Model of Matter
TeachScienceBeyondTeachScienceBeyond

AQA GCSE Physics: Particle Model of Matter

4 Resources
4 Well Structured Lessons on AQA Physics Particle Model of Matter. Suitable for the GCSE Physics and GCSE combined science specification The following topics are included Lesson 1: Changes of State Describe how, when substances change state, mass is conserved Describe energy transfer in changes of state Explain changes of state in terms of particles. Lesson 2: Density To use the particle model to explain the different states of matter and differences in density To calculate density, mass or volume using the density equation Lesson 3: Internal Energy Describe the particle model of matter Understand what is meant by the internal energy of a system Describe the effect of heating on the energy stored within a system Lesson 4: Specific Heat Capacity Describe the effect of increasing the temperature of a system in terms of particles State the factors that are affected by an increase in temperature of a substance Calculate specific heat capacity Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AQA GCSE Combined Science: Quantitative Chemistry  (Higher Tier)
TeachScienceBeyondTeachScienceBeyond

AQA GCSE Combined Science: Quantitative Chemistry (Higher Tier)

5 Resources
5 Well Structured GCSE Higher Tier Combined Science Lessons from the AQA Quantitative Chemistry Chapter Lesson 1: Relative Formula Mass To identify the relative atomic mass of an element from the periodic table To be able to define the term relative atomic mass To calculate relative formula masses from atomic masses Lesson 2: Mass Changes in Reactions To relate mass, volume and concentration To calculate the mass of solute in solution To relate concentration in mol/dm3 to mass and volume Lesson 3: Moles Describe the measurement of amounts of substance in moles Calculate the number of moles in a given mass Calculate the mass of a given number of moles Lesson 4: Moles and Equations calculate the masses of substances in a balanced symbol equation calculate the masses of reactants and products from balanced symbol equations calculate the mass of a given reactant or product. Lesson 5: Concentration of Solutions To relate mass, volume and concentration To calculate the mass of solute in solution To relate concentration in mol/dm3 to mass and volume Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Chemical Equilibrium (Practical Skills)
TeachScienceBeyondTeachScienceBeyond

Chemical Equilibrium (Practical Skills)

(0)
A structured KS5 theory lesson including starter activity and main work tasks with answers included on Chemical Equilibrium (Practical Skills) By the end of the lesson students should be able to: To understand how a titration experiment can be used to calculate the equilibrium constant, Kc To understand how a colorimeter can be used to calculate the equilibrium constant, Kc To analyse exam questions based on titration experiments in order to calculate out Kc Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above