All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.
All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.
This worksheet focuses on the skill of being able to find the point of intersection of the perpendicular from a point to a line. It includes related questions such as the perpendicular distance from a point to a line and the coordinates of the reflection of a point in a line. Some of the lines are given in vector form and some are in cartesian form, so students need to be confident with both.
There are 16 questions in total, all answers are provided.
This resource was designed to help students learn how graphs with logarithmic scales are connected to models of the form y=ab^x and y=ax^n.
The first section focuses on models of the form y=ab^x. There are examples to work through as a class, with axes provided, to establish that if y=ab^x then there is a linear relationship between log(y) and x. There is then a page of examples to practice changing from y=ab^x into the linear equation, and vice versa. The examples conclude with 2 questions where students are given experimental data and required to use a graph to estimate the values of a and b in the model y=ab^x - which is typical of an examination-style question.
There is then an exercise with 11 questions for students to complete on their own (again, all axes are provided).
The second section focuses on models of the form y=ax^n. There are examples to work through as a class, with axes provided, to establish that if y=ax^n then there is a linear relationship between log(y) and log(x). There is then a page of examples to practice changing from y=ax^n into the linear equation, and vice versa. The examples conclude with 2 questions where students are given experimental data and required to use a graph to estimate the values of a and n in the model y=ax^n - which is typical of an examination-style question.
There is then an exercise with 11 questions for students to complete on their own (again, all axes are provided).
Answers to all questions in the exercises are included.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This simple 2-sided worksheet can be used with your class as practice or revision of trigonometry in non right-angled triangles. The answers are included but can be removed if you want to use the sheet as a homework or test.
Note that one of the questions involves bearings.
This simple worksheet is a good way to introduce/review angles in parallel lines.
It begins with diagrams of corresponding, alternate and allied (supplementary) angles, then there are some examples to work through with your class.
On the second page there is a short exercise with similar problems for the class to do themselves.
Answers to the exercise are included.
This is a simple worksheet I created for my year 7 class to practise identifying different types of triangles and for them to work things out using their properties.
The first page is to work through with your class to complete the notes on each type of triangle and its properties. This includes how sides of equal length may be indicated on a diagram.
There is then a 2-page exercise for your class to attempt themselves. The questions include:
State the type of triangle from its diagram and given information
State the size of and unknown angle in a triangle (does NOT assume knowledge of angle sum being 180)
State the type of triangle from some information about some of its sides/angles (no diagram)
Considering what type(s) of triangle can contain, for example, an obtuse angle
Answers to the exercise are included.
The first two resources are 2 different worksheets that can be used to get your class to learn the different types of graph they are expected to be familiar with at GCSE (linear, quadratic, cubic, reciprocal, exponential and square root) and to be able to recognise or sketch them.
The first resource gets them to calculate points, plot them and join them up, while the second resource was designed to use Geogebra, but would suit any graphing software. In my experience students need a fair bit of time to complete these so this activity may well fill your entire lesson.
The third resource is a worksheet to check their knowledge after completing one of the earlier activities (solutions included).
The presentation introduces the idea of drawing a graph to represent how quickly a container fills with liquid over time. The print-version can be given to pupils to make notes on and complete as the presentation is shown.
The worksheet is designed to test their understanding after completing the presentation (answers are included).
This 21-page resource covers all the required knowledge for conditional probability in the A2 part of the new A level. In every section it contains examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The sections are:
Venn diagrams and set notation (revision of AS level work)
Conditional probability using Venn diagrams
Conditional probability using two-way tables
Conditional probability using tree diagrams
This projectable and printable resource will save you having to draw any tables/diagrams when teaching the topic and will make things easier for your students as they can just work directly on the provided tables and diagrams.
The 2 page assessment covers all aspects of the topic and fully worked solutions are provided.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This short worksheet can be used to deliver the topic of proof by contradiction in the new A level specification for all exam boards. A useful resource to help deliver this new topic - fully worked solutions are included for all examples and questions in the exercise.
It begins with 5 examples to work through with your class (the full proofs are given in the teacher’s version). The examples are carefully chosen so that, for the final example, students have seen the results/techniques they need to prove that the square root of 5 is irrational.
Students are expected to be familiar with a proof of the infinity of primes, so on the next page this proof is given in full, together with some numerical examples that should help students understand part of its argument.
There is then an exercise with 9 questions for students to attempt themselves (full proofs provided).
A homework/test is also included (7 questions), with fully-worked solutions provided.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
I've always thought that graph transformations is a difficult topic to teach well from a textbook, that's the reason I created these worksheets so my classes could practise sketching the transformations without having to draw axes or try to copy the original curve.
This worksheet has examples and an exercise which focuses on reflections but some questions also involve translations.
The examples are designed to work through as a class and then the rules for the different reflections can be completed.
There are 7 pages of questions for students to complete, including sketching the transformed graph and stating the equation of a transformed graph.
All answers are included - I usually project these so that the whole class can check their answers.
I've always thought that graph transformations is a difficult topic to teach well from a textbook, that's the reason I created these worksheets so my classes could practise sketching the transformations without having to draw axes or try to copy the original curve.
This worksheet has examples and an exercise on stretches.
The examples are designed to work through as a class and then the rules for the different stretches can be completed.
There are 6 pages of questions for students to complete, including sketching the stretched graph, stating the equation of a stretched graph and stating the new coordinates of a point on the original graph.
All answers are included - I usually project these so that the whole class can check their answers.
Please note this topic is not in the new GCSE spec.
I've always thought that graph transformations is a difficult topic to teach well from a textbook, that's the reason I created these worksheets so my classes could practise sketching the transformations without having to draw axes or try to copy the original curve.
This worksheet introduces the topic of graph transformations and then has examples and an exercise on translations.
The examples are designed to work through as a class and then the rules for the different translations can be completed.
There are 6 pages of questions for students to complete, including sketching the translated graph and stating the equation of a translated graph.
All answers are included - I usually project these so that the whole class can check their answers.
The first worksheet introduces the method for finding the point(s) on a curve with a particular gradient. There are a few examples to work through as a class and then 16 questions for students to attempt.
The second worksheet focuses on finding stationary points. Again, it explains the method, has a few examples to work through as a class and then 20 questions for students to complete. The worksheet then has a section that can be used to explain how to determine the nature of a stationary point by considering the gradient of the curve just before/after the point. There are some examples to do as a class and then 8 questions for students to complete.
The final worksheet can be used to explain and practise using the second derivative for determining the nature of stationary points.
Answers to all exercises are included.
Note that this resource was designed specifically for the Level 2 Further Maths qualification, so only covers differentiating functions with positive integer powers such as y=5x^3-4x+2, but can still be used an introduction to the general method of finding stationary points on a curve.
This 28-page resource covers all the required knowledge for the normal distribution in the A2 part of the new A level. In every section it contains notes and examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The sections are:
1. Discrete vs continuous random variables
2. Properties of the normal distribution curve
3. Using a calculator to find probabilities
4. z-scores
5. Standard normal distribution
6. Conditional probability
7. Questions that involve both the normal and binomial distribution
8. Inverse normal distribution
9. Finding unknown parameters
10. Using the normal distribution as a model
11. Approximating a binomial by a normal
This projectable and printable resource will save you having to write out or create any notes/examples when teaching this topic. It also increases how much you can get through in lessons as students don’t have to copy notes/questions and can work directly onto spaces provided for solutions. You could also email/print some or all of this for students who have missed lessons or need additional notes/practice/revision.
Also included is a 2-page assessment that can be used as a homework or a test. Fully worked solutions are provided.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
These 2 resources cover all the required knowledge and techniques for the topic of vectors, as required for AS part of the new A level. In each section it contains notes, explanations and examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The first resource is a 36-page booklet which covers the following:
1.Vector basics - translations, magnitude, unit vectors, angle between vectors
2.Parallel vectors and vector addition
3.Displacement and position vectors
4.Using vectors with points on a line (midpoints, check collinear, ratios)
5.Geometrical problems using vectors
The second resource is an 18-question assessment that can be used as a homework or test. Fully worked solutions to this assessment are provided.
Note - this does not cover the use of vectors in mechanics questions, only their application in pure maths.
This projectable and printable resource will save you having to create or write out any notes/examples when teaching the topic, and will make things easier for your students as they can just work directly on the given spaces provided for solutions. The comprehensive set of exercises contains around 100 questions for your students to complete. Answers to all exercises are included.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
Two versions (with/without frequency tables) of a treasure hunt activity for a class to attempt individually or in groups.
There are 24 questions, numbered from 1 to 24. Each group chooses a number from 1 to 24 at random (or you can assign them a start number), and this is the number of the first question they should attempt - this should be written in the top-left circle on their answer grid. Their answer to their first question should be a whole number from 1 to 24 - this should be written in the next circle on their grid and this is the number of the next question they should attempt. e.g. if a group starts on Q6 and they think the answer to Q6 is 13 then after Q6 they should attempt Q13 (and they should have 6 -> 13 on their answer grid).
If they answer the questions correctly they end up with the same chain of answers as on the solution, if they make a mistake they will repeat an earlier question and at that point you can decide how much help to give them sorting out their error(s).
This activity works best if you can stick the 24 questions around a large classroom or sports hall so the groups have to run around to find their next question. All the classes I've done these activities with have loved them.
The presentation shows examples with graphs to help students realise that a quadratic equation can have 0,1 or 2 (real) solutions.
The worksheet has an introductory section intended to be worked through as a class to establish the rules about the value of the discriminant and the number of (real) roots. This is followed by 10 questions for students to practise applying what they have learned. Answers are provided.
Three resources to practice finding the equation of quadratic graphs from different types of information. This is a tricky topic and is likely to stretch an able GCSE group.
The first resource is intended to be used as examples to work through as a group, the other resources are for additional practice.
All solutions are provided. Note that simultaneous equations and solving quadratics by factorising is required prior knowledge.