All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.
All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.
I've always thought that graph transformations is a difficult topic to teach well from a textbook, that's the reason I created these worksheets so my classes could practise sketching the transformations without having to draw axes or try to copy the original curve.
This worksheet has examples and an exercise which focuses on reflections but some questions also involve translations.
The examples are designed to work through as a class and then the rules for the different reflections can be completed.
There are 7 pages of questions for students to complete, including sketching the transformed graph and stating the equation of a transformed graph.
All answers are included - I usually project these so that the whole class can check their answers.
I've always thought that graph transformations is a difficult topic to teach well from a textbook, that's the reason I created these worksheets so my classes could practise sketching the transformations without having to draw axes or try to copy the original curve.
This worksheet has examples and an exercise on stretches.
The examples are designed to work through as a class and then the rules for the different stretches can be completed.
There are 6 pages of questions for students to complete, including sketching the stretched graph, stating the equation of a stretched graph and stating the new coordinates of a point on the original graph.
All answers are included - I usually project these so that the whole class can check their answers.
Please note this topic is not in the new GCSE spec.
I've always thought that graph transformations is a difficult topic to teach well from a textbook, that's the reason I created these worksheets so my classes could practise sketching the transformations without having to draw axes or try to copy the original curve.
This worksheet introduces the topic of graph transformations and then has examples and an exercise on translations.
The examples are designed to work through as a class and then the rules for the different translations can be completed.
There are 6 pages of questions for students to complete, including sketching the translated graph and stating the equation of a translated graph.
All answers are included - I usually project these so that the whole class can check their answers.
The presentation and accompanying worksheet introduces the topic of differentiation by considering the gradients of progressively smaller chords that are used to estimate the gradient of the curve/tangent at the point. Students use this method to find the gradient at some points on the y=x^2 curve and then on the y=x^3 curve - from these results they should be able to guess at generalising the method for differentiating x^n and then ax^n. This presentation and worksheet take a while to work through so this may take up a whole lesson.
The worksheet starts by reminding students how to differentiate and what dy/dx represents. In section A there are 18 examples of finding dy/dx to work through as a class, and then 30 questions for students to complete on their own. In section B there are a few examples of finding the gradient of a curve at a given point (to do as a class), then 10 questions for students to complete on their own. All answers are provided for the students' questions.
Note that this resource was designed specifically for the Level 2 Further Maths qualification, so only covers differentiating functions with positive integer powers such as y=5x^3-4x+2, but can still be used an introduction to differentiation in general.
The first worksheet has an introduction and explanation about increasing/decreasing functions, a few examples to work through as a class and then an exercise with 11 questions for students to complete. Answers to the exercise are included.
The second worksheet gives students some practice at using differentiation to help sketch graphs. There are a couple of examples to go through with your class and then an exercise with 7 questions. Solutions are provided.
Note that this resource was designed specifically for the Level 2 Further Maths qualification, so only covers differentiating functions with positive integer powers such as y=5x^3-4x+2, but can still be used an introduction to the general method of increasing/decreasing functions and sketching.
These 2 resources cover all the required knowledge and techniques for the application of vectors, as required for A2 part of the new A level. In each section it contains notes, explanations and examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The first resource is a 37-page booklet which covers the following:
1.Using vectors to describe the motion of an object in 2 dimensions
2.Motion of an object in 2 dimensions (constant acceleration)
3.Motion of an object in 2 dimensions (non-constant acceleration)
4.Vectors in 3 dimensions
5.Geometrical problems
The second resource is an 16-question assessment that can be used as a homework or test. Fully worked solutions to this assessment are provided.
This projectable and printable resource will save you having to create or write out any notes/examples when teaching the topic, and will make things easier for your students as they can just work directly on the given spaces provided for solutions. The comprehensive set of exercises contains over 100 questions for your students to complete. Answers to all exercises are included.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
Lots of worksheets, presentations and homeworks to cover the various parts the probability topic including basic probability, expectation, relative frequency, Venn diagrams and tree diagrams.
I think this set of resources covers everything your classes need to learn and practice on straight line graphs (up to GCSE level). All the resources are suitable to be projected or printed for students to work on, saving a lot of time for drawing graphs and allowing them to annotate or work on diagrams. All resources come with solutions included.
Here is a brief description of each resource:
1. Basic straight lines - lines of the form x=a, y=a and y=x or y=-x
2. Drawing straight lines - 10 questions using the equation of a line y=mx+c to complete a table of values and draw the graph.
3. Cover-up method - 12 questions to practise drawing lines of the form ax+by=c
4. Using the equation - test if a point lies on a line, determine y-coord given x-coord and vice versa (70 questions)
5. Finding the gradient - 18 questions to practise finding gradients, including where the scales on the axes are not the same
6. Matching y=mx+c to the graph - they find the gradient and y-intercept for each given graph and equation, learning the connection between the equation and properties of the graph
7. Equation to gradient and y-intercept - simple worksheet to practice writing down the gradient and coordinates of y-intercept from the equation, and vice versa (24 questions)
8. Finding the equation of a line - 24 questions to practise finding the equation of the line from its graph, including where the scales on the axes are not the same
9. Finding equation using point and gradient - 10 questions to practise doing this with a grid as an aid, then 26 questions without a grid
10. Pairs of lines - 4 graphs, each with a pair of parallel or perpendicular lines. By finding the equation of each line the students should start to see the rules for gradients of parallel and perpendicular lines
11. Parallel and perpendicular lines - almost 50 questions finding the equation of a line parallel / perp to a given line that passes through (0,b) or (a, b)
12. Using two points A and B - find midpoint M of AB, gradient of line through A and B, equation of line through A and B, equation of line perp. to AB through A, B or M. 10 questions to learn the methods with grids as an aid, then an exercise for each style of question (over 50 questions in total).
13. Multiple choice questions - quick assessment covering most of the topic
14. Straight lines revision - 60 questions to revise the whole topic
15. Homework - 19 questions on all aspects of the topic, fully works solutions included
I have just worked through all these with my year 10 group and it took around 5 hours of lesson time to complete. A more able group may need less time but you have enough resources here to keep your classes busy for a number of lessons.
This resource was designed to help students learn how graphs with logarithmic scales are connected to models of the form y=ab^x and y=ax^n.
The first section focuses on models of the form y=ab^x. There are examples to work through as a class, with axes provided, to establish that if y=ab^x then there is a linear relationship between log(y) and x. There is then a page of examples to practice changing from y=ab^x into the linear equation, and vice versa. The examples conclude with 2 questions where students are given experimental data and required to use a graph to estimate the values of a and b in the model y=ab^x - which is typical of an examination-style question.
There is then an exercise with 11 questions for students to complete on their own (again, all axes are provided).
The second section focuses on models of the form y=ax^n. There are examples to work through as a class, with axes provided, to establish that if y=ax^n then there is a linear relationship between log(y) and log(x). There is then a page of examples to practice changing from y=ax^n into the linear equation, and vice versa. The examples conclude with 2 questions where students are given experimental data and required to use a graph to estimate the values of a and n in the model y=ax^n - which is typical of an examination-style question.
There is then an exercise with 11 questions for students to complete on their own (again, all axes are provided).
Answers to all questions in the exercises are included.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This simple 2-sided worksheet can be used with your class as practice or revision of trigonometry in non right-angled triangles. The answers are included but can be removed if you want to use the sheet as a homework or test.
Note that one of the questions involves bearings.
This simple worksheet is a good way to introduce/review angles in parallel lines.
It begins with diagrams of corresponding, alternate and allied (supplementary) angles, then there are some examples to work through with your class.
On the second page there is a short exercise with similar problems for the class to do themselves.
Answers to the exercise are included.
The first two resources are 2 different worksheets that can be used to get your class to learn the different types of graph they are expected to be familiar with at GCSE (linear, quadratic, cubic, reciprocal, exponential and square root) and to be able to recognise or sketch them.
The first resource gets them to calculate points, plot them and join them up, while the second resource was designed to use Geogebra, but would suit any graphing software. In my experience students need a fair bit of time to complete these so this activity may well fill your entire lesson.
The third resource is a worksheet to check their knowledge after completing one of the earlier activities (solutions included).
The presentation introduces the idea of drawing a graph to represent how quickly a container fills with liquid over time. The print-version can be given to pupils to make notes on and complete as the presentation is shown.
The worksheet is designed to test their understanding after completing the presentation (answers are included).
This 21-page resource covers all the required knowledge for conditional probability in the A2 part of the new A level. In every section it contains examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The sections are:
Venn diagrams and set notation (revision of AS level work)
Conditional probability using Venn diagrams
Conditional probability using two-way tables
Conditional probability using tree diagrams
This projectable and printable resource will save you having to draw any tables/diagrams when teaching the topic and will make things easier for your students as they can just work directly on the provided tables and diagrams.
The 2 page assessment covers all aspects of the topic and fully worked solutions are provided.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This short worksheet can be used to deliver the topic of proof by contradiction in the new A level specification for all exam boards. A useful resource to help deliver this new topic - fully worked solutions are included for all examples and questions in the exercise.
It begins with 5 examples to work through with your class (the full proofs are given in the teacher’s version). The examples are carefully chosen so that, for the final example, students have seen the results/techniques they need to prove that the square root of 5 is irrational.
Students are expected to be familiar with a proof of the infinity of primes, so on the next page this proof is given in full, together with some numerical examples that should help students understand part of its argument.
There is then an exercise with 9 questions for students to attempt themselves (full proofs provided).
A homework/test is also included (7 questions), with fully-worked solutions provided.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This simple worksheet can be used to introduce/practise using number lines to represent inequalities.
The worksheet starts with a reminder about the different inequality symbols and what they mean. There are then a few examples (to do with your students) of representing inequalities on number lines and writing down the inequalities represented by given diagrams. There is a short exercise with 16 of each type of question - answers are included.
The first worksheet introduces the method for finding the point(s) on a curve with a particular gradient. There are a few examples to work through as a class and then 16 questions for students to attempt.
The second worksheet focuses on finding stationary points. Again, it explains the method, has a few examples to work through as a class and then 20 questions for students to complete. The worksheet then has a section that can be used to explain how to determine the nature of a stationary point by considering the gradient of the curve just before/after the point. There are some examples to do as a class and then 8 questions for students to complete.
The final worksheet can be used to explain and practise using the second derivative for determining the nature of stationary points.
Answers to all exercises are included.
Note that this resource was designed specifically for the Level 2 Further Maths qualification, so only covers differentiating functions with positive integer powers such as y=5x^3-4x+2, but can still be used an introduction to the general method of finding stationary points on a curve.
This 28-page resource covers all the required knowledge for the normal distribution in the A2 part of the new A level. In every section it contains notes and examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The sections are:
1. Discrete vs continuous random variables
2. Properties of the normal distribution curve
3. Using a calculator to find probabilities
4. z-scores
5. Standard normal distribution
6. Conditional probability
7. Questions that involve both the normal and binomial distribution
8. Inverse normal distribution
9. Finding unknown parameters
10. Using the normal distribution as a model
11. Approximating a binomial by a normal
This projectable and printable resource will save you having to write out or create any notes/examples when teaching this topic. It also increases how much you can get through in lessons as students don’t have to copy notes/questions and can work directly onto spaces provided for solutions. You could also email/print some or all of this for students who have missed lessons or need additional notes/practice/revision.
Also included is a 2-page assessment that can be used as a homework or a test. Fully worked solutions are provided.
Here is an example of one of my A level resources that is freely available:
/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186