Hero image

Guy Bartle's Shop

Guy Bartle is a retired teacher, who still freelances as a programmer, systems analyst, web designer, database manager and spreadsheet builder. This shop provides a wealth of resources for teaching and learning Computing from Year 7 onwards with an emphasis on Programming, GCSE and AS/A Level. There are resources for learning to program in Python for Year 7 onwards and interactive models for AS and A Level specifications: Data Structures, Data Sorts and Compilation. There are also spreadsheet in

Guy Bartle is a retired teacher, who still freelances as a programmer, systems analyst, web designer, database manager and spreadsheet builder. This shop provides a wealth of resources for teaching and learning Computing from Year 7 onwards with an emphasis on Programming, GCSE and AS/A Level. There are resources for learning to program in Python for Year 7 onwards and interactive models for AS and A Level specifications: Data Structures, Data Sorts and Compilation. There are also spreadsheet in
Endless Unguided Floating Point Binary Conversion question generator
gbartle_shsgbartle_shs

Endless Unguided Floating Point Binary Conversion question generator

(0)
This macro-enabled spreadsheet is designed to demonstrate the ability to convert from Decimal to Floating Point Binary as used in Computing, and vice-versa. There are two worksheets, one with questions converting from Decimal to Floating Point Binary, and one with questions converting from Floating Point Binary to Decimal. The size of the Mantissa can be varied between 4 and 8 bits in size, and the Exponent can be either 3 or 4 bits in size. This both changes the question difficulty and also gives learners an opportunity to appreciate how altering the sizes of the Mantissa and Exponent affect the range of values which can be stored and the accuracy with which they can be represented. With the Binary Exponent, both types of question use the convention with negative Binary numbers whereby if only the Sign Bit is a 1, it represents both sign and magnitude. For example, with a signed 4 bit Binary number, 1000 represents -8 in Decimal. Each worksheet generates five questions every time the ‘Generate Questions’ button is clicked. Once the learners have completed a question, clicking the associated ‘Mark It’ button reveals whether their answer are right or wrong, and the steps required to complete the question successful, namely: Decimal to Floating Point Binary Calculating the positive signed raw Binary; Twos Complementing to obtain the negative raw Binary, if required; Determining the distance the point floats; Determining the direction the point floats; Determining the positive Decimal value of the Exponent; Calculating the Binary value of the Exponent; Twos Complementing to obtain the negative Binary value of the Exponent if required; Working out the Mantissa; Giving the full Floating Point Binary. Floating Point Binary to Decimal Calculating the positive signed raw Binary; Working out the Mantissa; Working out the Binary Exponent; Twos Complementing to obtain the positive Binary value of the Exponent to determine its magnitude if required; Determining the Decimal value of the Exponent; Determining the distance the point floats; Determining the direction the point floats; Un-normalising the Binary Mantissa into its raw Floating Point form; Twos Complementing to obtain the positive Binary value of the raw Floating Point Binary Mantissa to determine its magnitude if required; Giving the Decimal value. Changing an answer removes the marking until the button is clicked again. This worksheet is designed to be used after completing our ‘Guided Floating Point Binary Conversion questions’ worksheet. NOTE: for this spreadsheet to work correctly, the copy of Excel in which it is running must allow macros to execute, and ‘Enable Content’ must be clicked when the spreadsheet is opened.
Endless Unguided Floating Point Binary Mathematics questions
gbartle_shsgbartle_shs

Endless Unguided Floating Point Binary Mathematics questions

(0)
This macro-enabled spreadsheet is designed to demonstrate the ability to add and subtract Floating Point Binary numbers as used in Computing. There are two worksheets, one with addition, and one with subtraction. The following options can be selected: • The size of the Mantissa can be varied between 4 and 8 bits in size. This both changes the question difficulty and also gives learners an opportunity to appreciate how altering the size of the Mantissa affects the accuracy with which values can be represented. • The size of the Exponent can be either 3 or 4 bits in size. This both changes the question difficulty and also gives learners an opportunity to appreciate how altering the size of the Exponent affects the range of values which can be stored. • Both positive and negative Mantissae can be generated, or questions can be made simpler by allowing only positive Mantissae to be generated. • There is an option to emulate how some processors treat the Carry Bit as an additional Sign Bit in certain conditions, allowing learners to determine the circumstances when this happens and the effect it has on eliminating Overflow. With the Binary Exponent, both types of question use the convention with negative Binary numbers whereby if only the Sign Bit is a 1, it represents both sign and magnitude. For example, with a signed 4 bit Binary number, 1000 represents -8 in Decimal. Each worksheet generates five questions every time the ‘Generate Questions’ button is clicked. Once the learners have completed a question, clicking the associated ‘Mark It’ button reveals whether their answer are right or wrong, and the steps required to complete the question successfully, namely: • Converting the two values from Floating Point form to raw binary; • Aligning the points of the raw binary values and padding out with additional Sign Bits and trailing zeroes as necessary; • Twos Complementing the bottom of the point-aligned values (subtraction only); • Performing the addition or subtraction of the point-aligned values; • Determining the Mantissa, or if Overflow has occurred; • Determining the Exponent, or if Overflow (the Exponent is a positive value too big to be represented in its selected number of bits) or Underflow (the Exponent is a negative value too big to be represented in its selected number of bits) has occurred; • Giving the full Floating Point binary string if possible, or stating it is impossible to do so if not; • Stating whether the Floating Point value has been truncated or not if it was possible to generate it. Changing an answer removes the marking until the button is clicked again. This worksheet is designed to be used after completing our ‘Guided Floating Point Binary questions’, ‘Unguided Floating Point Binary questions’ and ‘Guided Floating Point mathematics questions’ worksheets.
Mathematics for Computing Multi-Buy offer
gbartle_shsgbartle_shs

Mathematics for Computing Multi-Buy offer

7 Resources
Buy all seven products together and save £15 Endless Number Base Conversion question generator Endless Unsigned Binary Addition and Subtraction question generator Endless Signed Binary Addition and Subtraction question generator Endless Guided Floating Point Binary Conversion question generator Endless Unguided Floating Point Binary Conversion question generator Endless Guided Floating Point Binary Mathematics questions Endless Unguided Floating Point Binary Mathematics questions
Endless Guided Floating Point Binary Mathematics questions
gbartle_shsgbartle_shs

Endless Guided Floating Point Binary Mathematics questions

(0)
This macro-enabled spreadsheet is designed to practice adding and subtracting Floating Point Binary numbers as used in Computing. There are two worksheets, one with addition, and one with subtraction. Learners are guided through the steps necessary to complete each type of question, namely: • Converting the two values from Floating Point form to raw binary; • Aligning the points of the raw binary values and padding out with additional Sign Bits and trailing zeroes as necessary; • Twos Complementing the bottom of the point-aligned values (subtraction only); • Performing the addition or subtraction of the point-aligned values; • Determining the Mantissa, or if Overflow has occurred; • Determining the Exponent, or if Overflow (the Exponent is a positive value too big to be represented in its selected number of bits) or Underflow (the Exponent is a negative value too big to be represented in its selected number of bits) has occurred; • Giving the full Floating Point binary string if possible, or stating it is impossible to do so if not; • Stating whether the Floating Point value has been truncated or not if it was possible to generate it. The following options can be selected: • The size of the Mantissa can be varied between 4 and 8 bits in size. This both changes the question difficulty and also gives learners an opportunity to appreciate how altering the size of the Mantissa affects the accuracy with which values can be represented. • The size of the Exponent can be either 3 or 4 bits in size. This both changes the question difficulty and also gives learners an opportunity to appreciate how altering the size of the Exponent affects the range of values which can be stored. • Both positive and negative Mantissae can be generated, or questions can be made simpler by allowing only positive Mantissae to be generated. • There is an option to emulate how some processors treat the Carry Bit as an additional Sign Bit in certain conditions, allowing learners to determine the circumstances when this happens and the effect it has on eliminating Overflow. With the Binary Exponent, both types of question use the convention with negative Binary numbers whereby if only the Sign Bit is a 1, it represents both sign and magnitude. For example, with a signed 4 bit Binary number, 1000 represents -8 in Decimal. Each worksheet generates five questions every time the ‘Generate Questions’ button is clicked. Once the learners have completed a question, clicking the associated ‘Mark It’ button reveals which steps of their answer are right or wrong. Changing an answer removes the marking until the button is clicked again. This worksheet is designed to be used after completing our ‘Guided Floating Point Binary questions’ and ‘Unguided Floating Point Binary questions’ worksheets, and prior to completing our ‘Unguided Floating Point mathematics questions’ worksheet.
Computing Investigations Multi-Buy offer
gbartle_shsgbartle_shs

Computing Investigations Multi-Buy offer

3 Resources
Buy all three Computing investigations together for the price of two! Bundle includes: Addressing Mode investigation Binary Search investigation Complexity Comparisons investigation
Floating Point Multi-Buy offer
gbartle_shsgbartle_shs

Floating Point Multi-Buy offer

4 Resources
Buy all four floating point question spreadsheets together and save £10: Endless Guided Floating Point Binary Conversion question generator Endless Unguided Floating Point Binary Conversion question generator Endless Guided Floating Point Binary Mathematics questions Endless Guided Floating Point Binary Mathematics questions Endless Unguided Floating Point Binary Mathematics questions
Noughts and Crosses – a first Visual Studio Project (Visual Basic.net Coded Front End Version)
gbartle_shsgbartle_shs

Noughts and Crosses – a first Visual Studio Project (Visual Basic.net Coded Front End Version)

(0)
Noughts and Crosses – a first Visual Studio Project is designed as a first opportunity to code a Microsoft Visual Studio project from start to finish having finished a course of study learning C#, either through classes, self-study or following a tutorial. Presented in a series of thirteen steps, the learner is guided through the whole process, from interface design to adding functionality through coding, to produce a noughts and crosses (tic tac toe) game. Towards the end of developing the game, a little twist is added which gives the opportunity to code a practical use of a Circular Queue. Each step in the development process is supported by a fully commented coded example of a possible solution to prevent learners from hitting an insurmountable roadblock. In this version, the learner builds the interface by writing code. This method offers the opportunity to see how, by using constants and placing controls mathematically relative to each other, ongoing maintenance and development of the solution can be simplified. It also shows how control arrays can be created and how to write efficient code by using a single handler to action the same event for all the controls within an array or of the same type on the form. The supplied example solutions use this approach. Both versions offer an ideal gateway to developing the skills necessary to create one’s own, unique solutions to coding problems rather than following someone else’s style as in a tutorial. They also make an ideal jump-off point to using our File Handling Visual Studio project, which provides a one-stop guide to adding loading and saving functionality to an application.
Noughts and Crosses – a first Visual Studio Project (C# Coded Front End Version)
gbartle_shsgbartle_shs

Noughts and Crosses – a first Visual Studio Project (C# Coded Front End Version)

(0)
Noughts and Crosses – a first Visual Studio Project is designed as a first opportunity to code a Microsoft Visual Studio project from start to finish having finished a course of study learning C#, either through classes, self-study or following a tutorial. Presented in a series of thirteen steps, the learner is guided through the whole process, from interface design to adding functionality through coding, to produce a noughts and crosses (tic tac toe) game. Towards the end of developing the game, a little twist is added which gives the opportunity to code a practical use of a Circular Queue. Each step in the development process is supported by a fully commented coded example of a possible solution to prevent learners from hitting an insurmountable roadblock. In this version, the learner builds the interface by writing code. This method offers the opportunity to see how, by using constants and placing controls mathematically relative to each other, ongoing maintenance and development of the solution can be simplified. It also shows how control arrays can be created and how to write efficient code by using a single handler to action the same event for all the controls within an array or of the same type on the form. The supplied example solutions use this approach. Both versions offer an ideal gateway to developing the skills necessary to create one’s own, unique solutions to coding problems rather than following someone else’s style as in a tutorial. They also make an ideal jump-off point to using our File Handling Visual Studio project, which provides a one-stop guide to adding loading and saving functionality to an application.
Noughts and Crosses – a first Visual Studio Project (Visual Basic.net Form Designer Version)
gbartle_shsgbartle_shs

Noughts and Crosses – a first Visual Studio Project (Visual Basic.net Form Designer Version)

(0)
Noughts and Crosses – a first Visual Studio Project is designed as a first opportunity to code a Microsoft Visual Studio project from start to finish having finished a course of study learning C#, either through classes, self-study or following a tutorial. Presented in a series of thirteen steps, the learner is guided through the whole process, from interface design to adding functionality through coding, to produce a noughts and crosses (tic tac toe) game. Towards the end of developing the game, a little twist is added which gives the opportunity to code a practical use of a Circular Queue. Each step in the development process is supported by a fully commented coded example of a possible solution to prevent learners from hitting an insurmountable roadblock. In this version, the learner builds the interface using Visual Studio’s built-in Form Designer. This method offers the opportunity to develop the front end quickly and simply at the expense of some inefficiency in coding the functionality behind the controls. The supplied example solutions use this approach. Both versions offer an ideal gateway to developing the skills necessary to create one’s own, unique solutions to coding problems rather than following someone else’s style as in a tutorial. They also make an ideal jump-off point to using our File Handling Visual Studio project, which provides a one-stop guide to adding loading and saving functionality to an application.
Noughts and Crosses – a first Visual Studio Project (C# Form Designer Version)
gbartle_shsgbartle_shs

Noughts and Crosses – a first Visual Studio Project (C# Form Designer Version)

(0)
Noughts and Crosses – a first Visual Studio Project is designed as a first opportunity to code a Microsoft Visual Studio project from start to finish having finished a course of study learning C#, either through classes, self-study or following a tutorial. Presented in a series of thirteen steps, the learner is guided through the whole process, from interface design to adding functionality through coding, to produce a noughts and crosses (tic tac toe) game. Towards the end of developing the game, a little twist is added which gives the opportunity to code a practical use of a Circular Queue. Each step in the development process is supported by a fully commented coded example of a possible solution to prevent learners from hitting an insurmountable roadblock. In this version, the learner builds the interface using Visual Studio’s built-in Form Designer. This method offers the opportunity to develop the front end quickly and simply at the expense of some inefficiency in coding the functionality behind the controls. The supplied example solutions use this approach. Both versions offer an ideal gateway to developing the skills necessary to create one’s own, unique solutions to coding problems rather than following someone else’s style as in a tutorial. They also make an ideal jump-off point to using our File Handling Visual Studio project, which provides a one-stop guide to adding loading and saving functionality to an application.