Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
7 Full Lesson Bundle + A Bonus Revision Lesson which covers the Kinetics (How Fast?) chapters from the OCR A Level Chemistry Specification (also suitable for the AQA and Edexcel Spec- see Learning Objectives below)
Lesson 1: Order of Reactants
Lesson 2: The Rate Equation
Lesson 3&4 Concentration-Time Graphs
Lesson 5: Initial Rates and Clock Reactions
Lesson 6: The Rate Determining Step
Lesson 7: The Arrhenius Equation
Lesson 8: Revision Lesson
Learning Objectives:
Lesson 1:
LO1: To recall the terms rate of reaction, order, overall order and rate constant
LO2: To describe how orders of reactants affect the rate of a reaction
LO3: To calculate the overall order of a reaction
Lesson 2:
LO1: To determine the order of a reactant from experimental data
LO2: To calculate the rate constant, K, from a rate equation
LO3: To calculate the units of the rate constant
Lesson 3&4:
LO1: To know the techniques and procedures used to investigate reaction rates
LO2: To calculate reaction rates using gradients from concentration-time graphs
LO3: To deduce zero & first order reactants from concentration-time graphs
LO4: To calculate the rate constant of a first order reactant using their half-life
Lesson 5:
LO1: To determine the rate constant for a first order reaction from the gradient of a rate- concentration graph
LO2: To understand how rate-concentration graphs are created
LO3: To explain how clock reactions are used to determine initial rates of reactions
Lesson 6:
LO1: To explain and use the term rate determining step
LO2: To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction
LO3: To predict the rate equation that is consistent with the rate determining step
Lesson 7:
LO1: Explain qualitatively the effect of temperature change on a rate constant,k, and hence the rate of a reaction
LO2: To Know the exponential relationship between the rate constant, k and temperature, T given by the Arrhenius equation, k = Ae–Ea/RT
LO3: Determine Ea and A graphically using InK = -Ea/RT+ InA derived from the Arrhenius equation
Lesson 8:
This is an engaging KS5 revision lesson the Kinetics topic in A Level Chemistry (Year 13)
Students will be able to complete three challenging question rounds on kinetics covering:
Measuring Reaction Rates
Orders of reactants
Concentration-time graphs
Rate-concentration graphs
Clock Reactions
Initial rates
Arrhenius Equation
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
5 Full Lesson Bundle + FREE practical lesson covering Transition Elements from OCR A Level Chemistry. Please review the learning objectives below
Lesson 1: Transition Metals & Their Compounds
To know the electron configuration of atoms and ions of the d-block elements of Period 4 (Sc–Zn), given the atomic number and charge
To understand the elements Ti–Cu as transition elements
To illustrate, using at least two transition elements, of:
(i) the existence of more than one oxidation state for each element in its compounds
(ii) the formation of coloured ions
(iii) the catalytic behaviour of the elements and their compounds and their importance in the manufacture of chemicals by industry
Lesson 2: Transition Metals & Complex Ions
To explain and use the term ligand in terms of dative covalent bonding to a metal ion or metal, including bidentate ligands
To use the terms complex ion and coordination number
To construct examples of complexes with:
(i) six-fold coordination with an octahedral shape
(ii) four-fold coordination with either a planar or tetrahedral shape
Lesson 3: Stereoisomerism in Complex Ions
To understand the types of stereoisomerism shown by metal complexes, including those associated with bidentate and multidentate ligands including:
(i) cis–trans isomerism e.g. Pt(NH3)2Cl2
(ii) optical isomerism e.g. [Ni(NH2CH2CH2NH2)3] 2+
To understand the use of cis-platin as an anti-cancer drug and its action by binding to DNA preventing cell division
Lesson 4: Precipitation and Ligand Substitution Reactions
To recall the colour changes and observations of reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ with aqueous sodium hydroxide and ammonia (small amounts and in excess)
To construct ionic equations for the precipitation reactions that take place
To construct ionic equation of the ligand substitution reactions that take place in Cu2+ ions and Cr3+ ions
To explain the biochemical importance of iron in haemoglobin, including ligand substitution involving O2 and CO
Lesson 5: Transition Elements & Redox Reactions
To interpret the redox reactions and accompanying colour changes for:
(i) interconversions between Fe2+ and Fe3+
(ii) interconversions between Cr3+ and Cr2O72−
(iii) reduction of Cu2+ to Cu+
(iv) disproportionation of Cu+ to Cu2+ and Cu
To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions
Lesson 6: Practical on Precipitation and Ligand Substitution Reactions
To make observations of the reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ in aqueous sodium hydroxide and ammonia
To construct ionic equations for the redox reactions that take place
For 23 printable flashcards on this chapter please click here:
/teaching-resource/resource-12637622
For lessons on redox titrations involving transition metals please click here :
Part 1:
/teaching-resource/ocr-redox-titrations-part-1-12244792
Part 2:
/teaching-resource/ocr-redox-titrations-part-2-12244807
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
5 Full Lessons on Energetics in AS Level Chemistry. See below for the lesson objectives
Lesson 1: Enthalpy and Reactions
LO1: To explain that some chemical reactions are accompanied by enthalpy changes that are exothermic or endothermic
LO2: To construct enthalpy profile diagrams to show the difference in the enthalpy of reactants compared with products
LO3: To qualitatively explain the term activation energy, including use of enthalpy profile diagrams
**Lesson 2: Enthalpy Changes **
LO1: To know what standard conditions are
LO2:To understand the terms enthalpy change of combustion, neutralisation and formation
LO3:To construct balanced symbol equations based on the terms enthalpy change of combustion, neutralisation and formation.
Lesson 3: Bond Enthalpies
LO1: To explain the term average bond enthalpy
LO2:To explain exothermic and endothermic reactions in terms of enthalpy changes associated with the breaking and making of chemical bonds
LO3:To apply average bond enthalpies to calculate enthalpy changes and related quantities
**Lesson 4: Calorimetry **
LO1:To determine enthalpy changes directly from appropriate experimental results, including use of the relationship q=mcΔT
LO2:To know the techniques and procedures used to determine enthalpy changes directly using a coffee cup calorimeter
LO3:To know the techniques and procedures used to determine enthalpy changes indirectly using a copper calorimeter
**Lesson 5: Hess’ Law & Enthalpy Cycles **
LO1: To state Hess’ Law
LO2: To calculate the enthalpy change of a reaction from enthalpy changes of combustion using Hess’ Law
LO3:To calculate the enthalpy change of a reaction from enthalpy changes of formation using Hess’ Law
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 Full Lesson Bundle which covers the Kinetics chapter from the OCR AS Level Chemistry Specification (may also suitable for the AQA and Edexcel Spec- see Learning Objectives below to confirm)
Lesson 1: Collision Theory & Rates of Reaction
**1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
**2. To calculate the rate of reaction using the gradients of a concentration-time graph
**3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Lesson 2: Catalysts
**1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
**2. To calculate the rate of reaction using the gradients of a concentration-time graph
**3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Lesson 3: The Boltzmann Distribution
**1. To draw a labelled diagram of the Boltzmann distribution
**2. To explain qualitatively the Boltzmann distribution and its relationship with activation energy
**3. To explain how temperature changes and catalytic behaviour effect the proportion of molecules exceeding the activation energy and hence the reaction rate using Boltzmann distributions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Maths skills is a key component in all A level chemistry exam papers therefore this resource is fundamental in supporting your students to be A level Chemistry Exam ready (Note:**This resource is suitable for students studying the AS or A Level OCR A or B Exam Board). **
This resource can be completed as a lesson (~2-3 hrs required) or more conveniently it can be set as homework for students to complete independently. This resource can also be presented to students in small segments across the A level course.
After completing the resource students will be have a strong understanding of the following maths skills:
**1. Standard form
2. Significant Figures
3. Significant Figures in Chemistry Questions
4. Decimal Places
5. Percentage Uncertainty
6. Average/Mean
7. Unit Conversions **
A PowerPoint presentation is included in this resource for teachers to go through worked examples with students. Model answers to practice questions are also included in the PowerPoint presentation.
A student workbook is also included in this resource - in this workbook space has been provided for students can make key notes about each math skill. Practice questions are also included in the workbook and space has been provided for students to complete their answers.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks on the reactivity series and metal extraction. Suitable for AQA GCSE Chemistry and Combined Science (higher and foundation)
By the end of this lesson KS4 students should be able to:
Deduce an order of reactivity of metals based on experimental results
Explain reduction and oxidation by loss or gain of oxygen
Explain how the reactivity is related to the tendency of the metal to form its positive ion
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
6 Full Lesson Bundle covering the first 6 chapters in the OCR A Level Chemistry Chapter on Energy
Lesson 1: Lattice Enthalpy
**By the end of the lesson students will:
Explain the term lattice enthalpy
Understand the factors that determine the size of lattice enthalpy
Explain the terms standard enthalpy change of formation and first ionisation energy**
Lesson 2: Born-Haber Cycles
**By the end of the lesson students will:
**1. Construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values
**2. Calculate the value for lattice enthalpy from Born Haber Cycle diagrams
**3. Calculate other enthalpy change values from Born Haber Cycle diagrams
Lesson 3: Enthalpy Changes of Solution & Hydration
**By the end of the lesson students will:
**1. Define the terms enthalpy change of solution and hydration
**2. Construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid
3. Qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration
Lesson 4: Entropy
**By the end of lesson students will:
**1. Know that entropy is a measure of the dispersal of energy in a system, which is greater the more disordered a system
**2. Explain the difference in entropy of solids, liquids and gases
**3. Calculate the entropy change of a reactant based on the entropies provided for the reactants and products
Lesson 5: Gibbs Free Energy (Part 1)
**By the end of the lesson students will:
**1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system
**2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T
**3.Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation
Lesson 6: Gibbs Free Energy (Part 2)
By the end of the lessons students will:
1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system
2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or 3. Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation
The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 fully planned lessons (including starter questions and main work tasks) covering the AS Chemistry chapter on Redox Reactions;
Lesson 1: Oxidation States
Lesson 2: Half Equations
Lesson 3: Forming Redox Equations
By the end of lesson 1 students will:
Recall the rules for oxidation states of uncombined elements and elements in compounds
Determine the oxidation states of elements in a redox reaction
Identify what substance has been reduced or oxidised in a redox reaction
By the end of lesson 2 students will:
Understand what a half equation is
Explain what a redox equation is
Construct half equations from redox equations
By the end of lesson 3 students will:
Identify what substance has been reduced or oxidised in a redox reaction
Construct balanced half equations by adding H+ and H2O
Construct full ionic redox equations from half equations
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on IR Spectroscopy. Suitable for OCR AS Chemistry.
By the end of the lesson, students should be able to:
To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses
2)To understand how infrared spectroscopy works
3)To understand the application of infrared spectroscopy
To interpret IR spectra
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
6 Full Lesson Bundle (includes a bonus lesson) on the topic of Equilibrium from the OCR A Level Chemistry specification plus an end of topic test. See below for the lessons and learning objectives
Lesson 1: Le Chatelier’s Principle
To explain the term dynamic equilibrium
To apply le Chatelier’s principle to homogeneous equilibria in order to deduce qualitatively the effect of a change in temperature, pressure or concentration on the position of equilibrium
To explain why catalysts do not change the position of equilibrium
To explain the importance to the chemical industry of a compromise between chemical equilibrium and reaction rate in deciding the operational conditions
Lesson 2: The Equilibrium Constant Kc (Part 1)
To construct expressions for the equilibrium constant Kc for homogeneous reactions
To calculate the equilibrium constant Kc from provided equilibrium concentrations
To estimate the position of equilibrium from the magnitude of Kc
To know the techniques and procedures used to investigate changes to the position of equilibrium for changes in concentration and temperature
Lesson 3: The Equilibrium Constant Kc (Part 2)
To construct expressions for the equilibrium constant Kc for homogeneous and heterogeneous reactions
To calculate units for Kc
To calculate quantities present at equilibrium and therefore kc given appropriate data
Lesson 4: Controlling The Position of Equilibrium (Kc)
To understand and explain the effect of temperature, concentration, pressure and catalysts on Kc and controlling the position of equilibrium
Lesson 5: The Equilibrium Constant Kp
To use the terms mole fraction and partial pressure
To construct expressions for Kp for homogeneous and heterogeneous equilibria
To calculate Kp including determination of units
To understand the affect of temperature, pressure, concentration and catalysts on Kp and controlling the position of equilibrium
Lesson 6 (BONUS): Chemical Equilibirum (Practical Skills):
To understand how a titration experiment can be used to calculate the equilibrium constant, Kc
To understand how a colorimeter can be used to calculate the equilibrium constant, Kc
To analyse exam questions based on titration experiments in order to calculate out Kc
End of Topic Test:
A 45 minute end of chapter test on chemical equilibrium. The test covers content from both year 12 and 13 OCR on chemical equilibrium. A markscheme with model answers is also included which enables students self assess their answers in class with their teacher or as a homework task.
The test is based on the following learning objectives:
Apply le Chatelier’s principle to deduce qualitatively (from appropriate information) the effect of a change in temperature, concentration or pressure, on a homogeneous system in equilibrium.
Explain that a catalyst increases the rate of both forward and reverse reactions in an equilibrium by the same amount resulting in an unchanged position of equilibrium
Deduce, for homogeneous and heterogeneous reactions, expressions for the equilibrium constant Kc.
Calculate the values of the equilibrium constant, Kc (from provided or calculated equilibrium moles or concentrations), including determination of units.
Estimate the position of equilibrium from the magnitude of Kc.
Calculate, given appropriate data, the concentration or quantities present at equilibrium.
Deduce, for homogeneous and heterogeneous reactions, expressions for the equilibrium constant Kp.
Calculate the values of the equilibrium constant, Kp (from provided or calculated equilibrium moles or pressures), including determination of units.
Explain the effect of changing temperature on the value of Kc or Kp for exothermic and endothermic reactions.
State that the value of Kc or Kp is unaffected by changes in concentration or pressure or by the presence of a catalyst.
Explain how Kc or Kp controls the position of equilibrium on changing concentration, pressure and temperature
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
2 Full Lesson Bundle on Proton NMR Spectroscopy. suitable for the OCR A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Proton NMR Spectroscopy (Part 1)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The number of proton environments in the molecule
ii) The different types of proton environment present from chemical shift values
Lesson 2: Proton NMR Spectroscopy (Part 2)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The different types of proton environment present from chemical shift values
ii) The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required
iii) The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule
iv) Possible structures for the molecule
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Well structured Year 13 revision lesson on Redox Titrations. This lesson contains a starter activity on an exam question on redox equations and qualitative analysis followed by 4 exam style questions on unstructured redox titration questions. Model answers are included for all questions.
By the end of the lesson students should be able to:
To calculate unstructured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives
To calculate unstructured titration questions based on experimental results of redox titrations involving Fe2+ /Cr2O72- and its derivatives
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured theory lesson including starter activity and main work tasks all with answers on Qualitative Analysis of Ions
By the end of this lesson KS5 students should be able to:
To carry out test tube reactions and record observations to determine the presence of the following anions : CO32- SO42- , Cl-, Br-, and I-
To carry out test tube reactions and record observations to determine the presence of the following cations: NH4+, Fe2+, Fe3+, Mn2+ and Cu2+
To construct ionic equations to explain the qualitative analysis tests of cations and anions
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured A level Chemistry lesson including starter activity, AfL work tasks and lesson slides with answers on the rate determining step
By the end of this lesson KS5 students should be able to:
To explain and use the term rate determining step
To deduce possible steps in a reaction mechanism from the rate equation and the balanced equation for the overall reaction
To predict the rate equation that is consistent with the rate determining step
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations
**By the end of this lesson KS5 students should be able to:
**LO1: To understand what a redox titration is.
LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4-
LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
15 Full Lesson Bundle (included a free bonus lesson) covering the module 2.1 on Atoms & Reactions from the OCR A Level Chemistry A Specification. See below for the lesson objectives.
Lesson 1: Atomic Structure & Isotopes
To describe the atomic structure of an atom
To describe atomic structure in terms of protons, neutrons and electrons for atoms and ions, given the atomic number, mass number and any ionic charge
To define the term isotopes and to identify the atomic structure of isotopes in terms of protons, neutrons and electrons
Lesson 2: Relative Masses
To define the terms relative atomic mass, relative formula mass and relative molecular mass
To calculate the relative formula mass and relative molecular mass of compounds and molecules
Lesson 3: Mass Spectroscopy
To determine the relative atomic masses and relative abundances of the isotope using mass spectroscopy
To calculate the relative atomic mass of an element from the relative abundances of its isotope
Lesson 4: Ions & The Periodic Table
To predict the ionic charge of ions based on the position of the element in the periodic table
To recall the names of common atomic and molecular ions
To be able write the formula of ionic compounds
Lesson 5: Empirical and Molecular Formulae
To understand what is meant by ‘empirical formula’ and ‘molecular formula’
To calculate empirical formula from data giving composition by mass or percentage by mass
To calculate molecular formula from the empirical formula and relative molecular mass.
**Lesson 6: Water of Crystallisation **
To know the terms anhydrous, hydrated and water of crystallisation
To calculate the formula of a hydrated salt from given percentage composition or mass composition
To calculate the formula of a hydrated salt from experimental results
Lesson 7: Moles & Volumes (Solutions & Gas Volumes)
To calculate the amount of substance in mol, involving solution volume and concentration
To understand the terms dilute, concentrated and molar
To explain and use the term molar gas volume
To calculate the amount of substance in mol, involving gas volume
Lesson 8: Moles & Equations
To know how to balance symbol equations
To calculate the moles of reactants or products based on chemical equations and mole ratios
To calculate the masses of reactants used or products formed based on chemical equations and mole ratios
Lesson 9: Percentage Yield and Atom Economy
To know how to balance symbol equations
To calculate atom economy and percentage yield from balanced symbol equations
To calculate the masses and moles of products or reactants from balanced symbol equations
Lesson 10: Acids, Bases & Neutralisation
To know the formula of common acids and alkalis
To explain the action of an acid and alkali in aqueous solution and the action of a strong and weak acid in terms of relative dissociations
To describe neutralisation as a reaction of:
(i) H+ and OH– to form H2O
(ii) acids with bases, including carbonates, metal oxides and alkalis (water-soluble bases), to form salts, including full equations
Lesson 11: Acid-Base Titration Procedures
To outline the techniques and procedures used when preparing a standard solution of required concentration
To outline the techniques and procedures used when carrying out acid–base titrations
To determine the uncertainty of measurements made during a titration practical
Lesson 12: Acid-Base Titration Calculations
To apply mole calculations to complete structured titration calculations, based on experimental results of familiar acids and bases.
To apply mole calculations to complete non-structured titration calculations, based on experimental results of non-familiar acids and bases
Lesson 13: Oxidation States
To recall the rules for oxidation states of uncombined elements and elements in compounds
To determine the oxidation states of elements in a redox reaction
To identify what substance has been reduced or oxidised in a redox reaction
Lesson 14: Half Equations (Redox Reactions)
To understand what a half equation is
To explain what a redox equation is
To construct half equations from redox equations
Lesson 15: Redox Equations
To identify what substance has been reduced or oxidised in a redox reaction
To construct balanced half equations by adding H+ and H2O
To construct full ionic redox equations from half equations
**Note: Lesson 15 is a free bonus (stretch & challenge) lesson that focuses on redox in year 13 (module 5.2.3 (spec points a-c)) **
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured theory lesson including starter activity, AfL work tasks and main work tasks all with answers on The Halogens: Physical Properties and Trends in Reactivity
By the end of this lesson KS5 students should be able to:
To describe and explain the trend in boiling points of the halogens in terms of induced dipole-dipole interactions (London Forces)
To describe and explain the trend in reactivity of the halogens illustrated by their displacement reaction with other halide ions
To construct full and ionic equations of halogen-halide displacement reactions and to predict the colour changes of these reactions in aqueous and organic solutions
All tasks have worked out answers, which will allow students to self assess their work during the lesson.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on chromatography
**By the end of the lesson, students should be able to:
To interpret one-way TLC chromatograms in terms of Rf values
To interpret gas chromatograms in terms of:
(i) retention times
(ii) Â the amounts and proportions of the components in a mixture
To understand the creation and use of external calibration curves to confirm concentrations of components.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, and main work tasks all with answers on Disproportionation & The Uses of Chlorine
By the end of this lesson KS5 students should be able to:
To explain the term disproportionation
To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions
To evaluate the uses of chlorine (How Science Works)
All tasks have worked out answers, which will allow students to self assess their work during the lesson
For the 3rd learning objective, students will have an opportunity to explore the uses of chlorine beyond the curriculum by completing a group research task based on the following OCR specification point:
HSW9,10,12 Decisions on whether or not to chlorinate water depend on balance of benefits and risks, and ethical considerations of people’s right to choose. Consideration of other methods of purifying drinking water.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson (Part 2 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations
**By the end of this lesson KS5 students should be able to:
**LO1: To describe the practical techniques and procedures used to carry out redox titrations for I2/S2O32-
LO2: To calculate structured titration questions based on experimental results of redox titrations involving I2/S2O32- and non familiar redox systems
LO3: To calculate non-structured titration questions based on experimental results of I2/S2O32-
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above