Hero image

GJHeducation's Shop

Average Rating4.51
(based on 932 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1381k+Views

2193k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The brain (AQA GCSE Biology)
GJHeducationGJHeducation

The brain (AQA GCSE Biology)

(1)
This fully-resourced lesson has been designed to cover the content of specification point 5.2.2 (The brain) as found in topic 5 of the AQA GCSE Biology specification. This resource contains an engaging PowerPoint (33 slides) and accompanying worksheets, some of which have been differentiated so that students of different abilities can access the work. The resource is filled with a wide range of activities, each of which has been designed to engage and motivate the students whilst ensuring that the key Biological content is covered in detail. Understanding checks are included throughout so that the students can assess their grasp of the content. In addition, previous knowledge checks make links to content from earlier topics such as cancer. The following content is covered in this lesson: The functions of the cerebral cortex, medulla and cerebellum Identification of the regions of the brain on an external and internal diagram The early use of stroke victims to identify functions The key details of the MRI scanning technique The difficulties of diagnosing and treating brain disorders and disease As stated at the top, this lesson has been designed for GCSE-aged students who are studying the AQA GCSE Biology course, but it can be used with A-level students who need to go back over the key points before looking at the functionality of the regions in more detail
OCR A-level Biology A PAPER 1 REVISION (Biological processes)
GJHeducationGJHeducation

OCR A-level Biology A PAPER 1 REVISION (Biological processes)

(1)
This resource has been designed to motivate students whilst they evaluate their understanding of the content in modules 1, 2, 3 and 5 of the OCR A-level Biology A specification which can be assessed in PAPER 1 (Biological processes). The resource includes a detailed and engaging Powerpoint (149 slides) and is fully-resourced with differentiated worksheets that challenge the students on a wide range of topics. The resource has been written to include different types of activities such as exam questions with explained answers, understanding checks and quiz competitions. The aim was to cover as much of the specification content as possible but the following topics have been given particular attention: Monosaccharides, disaccharides and polysaccharides Glycogen and starch as stores and providers of energy The homeostatic control of blood glucose concentration Osmoregulation Lipids Ultrafiltration and selective reabsorption Diabetes mellitus Voluntary and involuntary muscle The autonomic control of heart rate The organisation of the nervous system The gross structure of the human heart Haemoglobin and the Bohr shift Bonding The ultrastructure of plant cells Cyclic vs non-cyclic photophosphorylation Oxidative phosphorylation Anaerobic respiration in eukaryotes Helpful hints and tips are given throughout the resource to help students to structure their answers. This resource can be used in the lead up to the actual Paper 1 exam or earlier in the course when a particular area of modules 1, 2, 3 or 5 is being studied. If you are happy with this resource, why not look at the one which has been designed for Paper 2 (Biological diversity)?
AQA A-level biology revision
GJHeducationGJHeducation

AQA A-level biology revision

8 Resources
This bundle contains 8 revision lessons which use multiple-choice assessments consisting of 20 questions to challenge the students on their knowledge and understanding of all 8 topics in the AQA A-level biology specification. In addition to the assessments, each lesson includes a PowerPoint which reveals the answers and contains additional questions to check on further knowledge and detail. If you would like to sample the quality of these lessons, then download the topic 1 and 6 revision lessons as these have been uploaded for free.
Maths in AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in AQA GCSE Combined Science REVISION

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Topic 3: Cell structure, Reproduction & Development (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 3: Cell structure, Reproduction & Development (Edexcel International A-level Biology)

14 Resources
The locus and linkage, meiosis, differential gene expression and protein transport within cells lessons have been uploaded for free and by downloading these, you will be able to observe the detail of planning that has gone into all of the lessons that are included in this bundle. This intricate planning ensures that the students are engaged and motivated whilst the detailed content of topic 3 (Cell structure, Reproduction and Development) of the Edexcel International A-level Biology specification is covered. The 14 lesson PowerPoints and accompanying resources contain a wide range of activities which cover the following topic 3 specification points: All living organisms are made of cells Cells of multicellular organisms are organised into tissues, organs and organ systems The ultrastructure of eukaryotic cells The function of the organelles in eukaryotic animal cells The role of the RER and Golgi apparatus in protein transport within cells The ultrastructure of prokaryotic cells Magnification and resolution in light and electron microscopes The gene locus is the location of a gene on a chromosome The linkage of genes on a chromosome The role of meiosis in ensuring genetic variation Understand how the mammalian gametes are specialised for their functions The role of mitosis and the cell cycle in growth and asexual reproduction Calculation of mitotic indices The meaning of the terms stem cell, pluripotent, totipotent, morula and blastocyst The decisions that have to be made about the use of stem cells in medical therapies Cells become specialised through differential gene expression One gene can give rise to more than one protein through post-transcriptional changes to mRNA Phenotype is the interaction between genotype and the environment Epigenetic modifications can alter the activation of certain genes Some phenotypes are affected by multiple alleles or by polygenic inheritance Due to the detail included in all of these lessons, it is estimated that it will take in excess of 6 weeks of allocated A-level teaching time to complete the teaching of the bundle
PAPER 1 REVISION (Edexcel SNAB)
GJHeducationGJHeducation

PAPER 1 REVISION (Edexcel SNAB)

(0)
This detailed lesson has been intricately planned to support students with their revision in the build up to their PAPER 1 mocks or final assessment. The wide range of tasks and activities will challenge students on their knowledge of topics 1 - 6 of the Pearson Edexcel A-level biology A specification, allowing them to recognise those areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: The nature of the genetic code Classification hierarchy The three-domain model DNA triplets and mRNA codons The structure of haemoglobin and collagen Fibrous and globular proteins The roles of the heart valves in the cardiac cycle The enzymes in DNA replication The role of meiosis in genetic variation The structure of starch and cellulose The ultrastructure of eukaryotic cells The light-dependent and light-independent reactions of photosynthesis The role of APCs and T helper cells in the immune response The evolution of antibiotic resistance Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic. A lesson revising PAPER 2 content (topics 1 - 4, 7 & 8) has also been uploaded.
Topic 3 REVISION (AQA A-level biology)
GJHeducationGJHeducation

Topic 3 REVISION (AQA A-level biology)

(0)
At the end of topic 3, or in the lead up to mocks or final A-level exams, students can use this lesson to assess their understanding of topic 3 content. The lesson consists of 20 multiple-choice questions, which have been written to challenge the students on the detail of their knowledge, as well as a PowerPoint which contains the answers, explanations and key points related to the specification. The PowerPoint also contains other topic 3 knowledge checks on content which isn’t directly questioned in the multiple-choice assessment, and prior knowledge checks to encourage the students to recognise the links to topic 1 and 2. The following topics are challenged by the multiple-choice questions: Surface area to volume ratio Gas exchange (in animals and plants) Digestion and absorption Mass transport in animals Mass transport in plants
Cardiac cycle (AQA A-level Biology)
GJHeducationGJHeducation

Cardiac cycle (AQA A-level Biology)

(0)
This detailed lesson describes and explains the pressure and volume changes and associated valve movements that occur during the cardiac cycle to maintain the unidirectional flow of blood. The PowerPoint and accompanying resource have been designed to cover the 5th part of point 3.4.1 of the AQA A-level Biology specification. The start of the lesson introduces the cardiac cycle as well as the key term systole, so that students can immediately recognise that the three stages of the cycle are atrial and ventricular systole followed by diastole. Students are challenged on their prior knowledge of the structure of the heart as they have to name and state the function of an atrioventricular and semi-lunar valve from an internal diagram. This leads into the key point that pressure changes in the chambers and the major arteries results in the opening and closing of these sets of valves. Students are given a description of the pressure change that results in the opening of the AV valves and shown where this would be found on the graph detailing the pressure changes of the cardiac cycle. They then have to use this as a guide to write descriptions for the closing of the AV valve and the opening and closing of the semi-lunar valves and to locate these on the graph. By providing the students with this graph, the rest of the lesson can focus on explaining how these changes come about. Students have to use their current and prior knowledge of the chambers and blood vessels to write 4 descriptions that cover the cardiac cycle. The final part of the lesson covers the changes in the volume of the ventricle. This lesson has been written to tie in with the other uploaded lessons on the circulatory system as detailed in topic 3.4.1 (Mass transport in animals)
Topic 7: Respiration, Muscles and the Internal Environment (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Topic 7: Respiration, Muscles and the Internal Environment (Edexcel Int. A-level Biology)

20 Resources
This bundle contains 20 lesson PowerPoints which are highly detailed to ensure that the topic 7 content is covered at the depth required for A-level Biology. The lessons have been intricately planned to contain a wide variety of tasks that will engage and motivate the students whilst covering the current material and to make links to other lessons in this topic as well as to the previous 6 topics. The tasks, which include exam-style questions with mark schemes, guided discussion time and quick quiz competitions, cover the following points in the respiration, muscles and the internal environment topic of the Edexcel International A-level Biology specification: The overall reaction of aerobic respiration The many steps of respiration are controlled and catalysed by a specific intracellular enzyme The roles of glycolysis in aerobic and anaerobic respiration The role of the link reaction and the Krebs cycle in the complete oxidation of glucose The synthesis of ATP by oxidative phosphorylation The respiratory quotient Know the way in which muscles, tendons, the skeleton and ligaments interact in movement The contraction of skeletal muscle in terms of the sliding filament theory The myogenic nature of cardiac muscle The coordination of the heartbeat The use of ECGs in the diagnosis of abnormal heart rhythms The calculation of cardiac output The control of heart rate and ventilation rate by the cardiovascular control centre and the ventilation centre in the medulle oblongata The role of adrenaline in the fight or flight response The principle of negative feedback in maintaining systems within narrow limits The meaning of homeostasis and the maintenance of a dynamic equilibrium in exercise The gross and microscopic structure of the mammalian kidney Selective reabsorption in the proximal tubule Water reabsorption in the loop of Henle The control of mammalian plasma concentration Switching genes on and off by DNA transcription factors and the roles of peptide and steroid hormones Due to the detail included in this lesson bundle, it is estimated that it will take in excess of 2 months of allocated A-level teaching time to cover the content If you would like to sample the quality of the lessons in the bundle, then download the skeletal muscle, coordination of the heartbeat, role of adrenaline and control of mammalian plasma concentration lessons as these have been uploaded for free The “negative and positive feedback” and “skeletal muscle” lessons are also uploaded on TES for free but haven’t been included in this bundle as the resource limit has been reached
Random and systematic errors REVISION (AQA GCSE)
GJHeducationGJHeducation

Random and systematic errors REVISION (AQA GCSE)

(0)
This lesson revisits the topic of random and systematic errors and also challenges students on other scientific skills such as identifying variables. Students tend to find this topic confusing, so the PowerPoint and accompanying resources have been designed to support them to identify whether an error is random or systematic and then to understand what to do next. The lesson guides the students through a series of real life examples and shows them how to spot each type of error. There is a considerable mathematical element to this lesson, including the calculation of means or missing values in a table. The lesson concludes with a series of exam-style questions where the students have to apply their understanding of identifying errors, variables and calculating means.
Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level biology)
GJHeducationGJHeducation

Topic 8: Coordination, Response and Gene Technology (Edexcel Int. A-level biology)

11 Resources
Topic 8 of the Edexcel International A-level biology specification is content heavy and therefore all 11 lessons included in this bundle have been planned to cover this content in an engaging and memorable way. The lessons are filled with a wide variety of tasks, including understanding and prior knowledge checks, guided discussion periods and quick quiz competitions. Answers to all of the knowledge checks are embedded into the PowerPoints to allow the students to assess their progress. The following specification points are covered by this bundle: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.8, 8.10, 8.13, 8.14, 8.18, 8.19, 8.20 If you would like to get a sense for the quality of the lessons in this bundle, then download the nervous and hormonal control, saltatory conduction and pupil reflex lessons as these have been shared for free.
Module 6.1.3:  Manipulating genomes (OCR A-level Biology A)
GJHeducationGJHeducation

Module 6.1.3: Manipulating genomes (OCR A-level Biology A)

6 Resources
This bundle of 6 lessons covers a lot of the content in Module 6.1.3 (Manipulating genomes) of the OCR A-level Biology A specification and includes an end of module revision lesson. The topics covered within these lessons include: The principles of DNA sequencing The development of new DNA sequencing techniques The principles of the PCR and its applications The principles and uses of electrophoresis to separate DNA fragments and proteins The principles and techniques of genetic engineering 6.1.3 REVISION All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
TOPIC 2 REVISION (AQA A-level biology)
GJHeducationGJHeducation

TOPIC 2 REVISION (AQA A-level biology)

(0)
This revision lesson uses a 20 question multiple-choice assessment to challenge the students on their understanding of the topic 2 content (Cells). It has been written to check their knowledge from across the AQA A-level biology topic 2 specification and includes questions on the structure of eukaryotic and prokaryotic cells, the methods of studying cells, mitosis and binary fission, transport across cell membranes and the immune system. The lesson includes a PowerPoint where the answers to the 20 questions are revealed, along with their respective specification codes, to allow the students to pinpoint areas of the specification that require extra attention. The PowerPoint also includes extra questions and tasks to challenge some of the content not directly questioned in the MC assessment. Lessons challenging their knowledge of topics 1, 3 and 4 have also been uploaded.
Paper 2 REVISION (AQA A-level biology)
GJHeducationGJHeducation

Paper 2 REVISION (AQA A-level biology)

(0)
This extensive revision lesson challenges students on their knowledge and understanding of the content of topics 5 - 8 of the AQA A-level specification. The PowerPoint and accompanying resources are detailed and engaging and contain a selection of tasks which challenge the following points: Directional, stabilising and disruptive selection Saltatory conduction and other factors affecting conductance speed The structure of a motor neurone Sensory receptors, depolarisation and initiation of an action potential Hardy-Weinberg principle Genetic terminology Codominance and sex-linkage Autosomal linkage Chi-squared test Phosphorylation The stages of aerobic respiration Explaining lower ATP yields in anaerobic respiration Skeletal muscle contraction Structure and function of slow and fast twitch muscle fibres The control of heart rate Electrophoresis and genetic fingerprinting The secondary messenger model The students are tested through a variety of tasks including exam questions, understanding checks, and quiz rounds to maintain engagement. Due to the mathematical content in all A-level exams, there is also a focus on these skills. The answers to all questions are embedded into the PowerPoint so students can use this resource outside of the classroom. The delivery of the whole lesson will likely need at least 2 or 3 hours of contact time so this resource could be used with students in the final weeks building up to their paper 2 exam, or alternatively with students before their mocks on these topics.
Xylem and Phloem (GCSE)
GJHeducationGJHeducation

Xylem and Phloem (GCSE)

(1)
This is a fully-resourced lesson that looks at the functional and structural differences between the transport tissues in a plant, the xylem and phloem. The lesson includes an engaging lesson presentation (41 slides), which includes numerous student-led tasks, progress checks and quick competitions and two question worksheets, one of which is a differentiated version to enable those students who are finding this topic difficult to still be able to access the learning. The lesson begins with the introduction of the two tissues as well as a brief introduction to the substances which they each carry. The next part of the lesson focuses on the xylem cells and the resulting xylem vessel, and key terms such as lignin are brought into the lesson so that students can understand how these cells are waterproofed, which causes them to decay and form hollow tubes. Having met a lot of information, students are challenged to act like an examiner to form a table based question to compare the xylem against the phloem where they have to come up with features which could be compared against. This table will form the backbone of the lesson and students will use it later in the lesson when they have to write summary passages about each of the tissues. Moving forwards, a quick competition is used to enable the students to meet the names of the cells that form the phloem tissue, the sieve tube elements and the companion cells. Students will see how they are involved in the functioning of the phloem and questions are posed which relate to other topics such as the involvement of mitochondria wherever active transport occurs. Progress checks like this are found at regular intervals throughout the lesson so that students can constantly assess their understanding. This lesson has been designed for GCSE students. If you are looking to teach about these tissues but to a higher standard, you could use my uploaded alternative called Xylem and Phloem (A-level)
Temperature and the rate of reaction
GJHeducationGJHeducation

Temperature and the rate of reaction

(0)
A practical based lesson presentation (26 slides) that investigates how increasing the temperature affects the rate of reaction and helps students to explain the trend in the results. Students can either carry out the reaction between sodium thiosulphate and hydrochloric acid or use the results which are provided. The equation to work out the rate of reaction is introduced to the students and they are challenged to plot the results on a line graph. A key term to be used in the explanation is introduced through a quick competition and then students are challenged to explain the trend
The PATHOGENS that cause communicable diseases (OCR A-level Biology)
GJHeducationGJHeducation

The PATHOGENS that cause communicable diseases (OCR A-level Biology)

(0)
This lesson describes the different types of pathogens that can cause communicable diseases in plants and animals. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (a) of the OCR A-level Biology specification but as this is the first lesson in module 4, it has been specifically planned to make links to upcoming topics such as phagocytosis, vaccinations and classification. viruses - HIV/AIDS, influenza, TMV bacteria - TB, cholera, ring rot protoctista - malaria fungi - athlete’s foot, black sigatoka, ringworm, The diseases shown above are covered by the detailed content of this lesson and the differing mechanisms of action of the four types of pathogens are discussed and considered throughout. For example, time is taken to describe how HIV uses a glycoprotein to attach to T helper cells whilst toxins released by bacteria damage the host tissue and the Plasmodium parasite is transmitted from one host to another by a vector to cause malaria. The accompanying worksheets contain a range of exam-style questions, including a mathematical calculation, and mark schemes are embedded into the PowerPoint to allow students to immediately assess their understanding.
Autoimmune diseases (OCR A-level Biology)
GJHeducationGJHeducation

Autoimmune diseases (OCR A-level Biology)

(0)
This lesson describes why a disease would be deemed to be an autoimmune disease and describes the mechanisms involved in a few examples. The PowerPoint and accompanying worksheets have been primarily designed to cover point 4.1.1 (k) of the OCR A-level Biology A specification, but this lesson can also be used to revise the content of modules 2 and 3 and the previous lessons in 4.1.1 through the range of activities included The lesson begins with a challenge, where the students have to recognise diseases from descriptions and use the first letters of their names to form the term, autoimmune. In doing so, the students will immediately learn that rheumatoid arthritis, ulcerative colitis, type I diabetes mellitus, multiple sclerosis and myasthenia gravis are all examples of autoimmune diseases. The next part of the lesson focuses on the mechanism of these diseases where the immune system cells do not recognise the antigens (self-antigens) on the outside of the healthy cells, and therefore treats them as foreign antigens, resulting in the production of autoantibodies against proteins on these healthy cells and tissues. Key details of the autoimmune diseases stated above and lupus are described and links to previously covered topics as well as to future topics such as the nervous system are made. The students will be challenged by numerous exam-style questions, all of which have mark schemes embedded into the PowerPoint to allow for immediate assessment of progress.
The Contact process (OCR GCSE Chemistry)
GJHeducationGJHeducation

The Contact process (OCR GCSE Chemistry)

(1)
This lesson is fully-resourced, engaging and detailed and explains how the Contact process is one of the 3 steps involved in making sulfuric acid. The PowerPoint and accompanying resources, which are differentiated, have been written to cover point C6.1(d) of the OCR Gateway A GCSE Chemistry specification. The lesson begins with a challenge where students have to use the 1st letters of the answers to questions on previously covered topics to come up with the word CONTACT. At this point, the students are introduced to the contact process as the 2nd step in a 3 stage process to make sulfuric acid. The lesson goes through the details of each of the 3 steps but particular time is spent exploring the conditions needed for the contact process in step 2. Students are continuously tested on their knowledge of reversible reactions and the key concepts to do with equilibrium position and equilibrium yield are explained so they can understand how the conditions of 2 atmospheres and 450 degrees celsius are chosen. Again through a prior knowledge check of empirical formula, the students will be introduced to vanadium oxide as the catalyst. As well as exam-style questions with displayed answers to check on current understanding, there are discussion points as well as quick quiz competitions to introduce key terms and values in a memorable way.
Surface area to volume ratio
GJHeducationGJHeducation

Surface area to volume ratio

(16)
An engaging lesson presentation (16 slides) which looks at the surface area to volume ratio and ensures that students can explain why this factor is so important to the organisation of living organisms. This is a topic which is generally poorly misunderstood by students and therefore time has been taken to design an engaging lesson which highlights the key points in order to encourage greater understanding. The lesson begins by showing students the dimensions of a cube and two answers and challenges them to work out what the questions were that produced these answers. Students are shown how to calculate the surface area and the volume of an object before it is explained how this can then be turned into a ratio. Time is taken at this point to ensure that students can apply this new-found knowledge as they have to work out which of the three organisms in the “SA: V OLYMPICS” would stand aloft the podium. Students are given the opportunity to draw conclusions from this task so that they can recognise that the larger the organism, the lower the surface area to volume ratio. The lesson finishes by explaining how larger organisms, like humans, have adapted in order to increase the surface area at important exchange surfaces in their bodies. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but is perfectly suitable for A-level students who want to look at this topic from a basic level