Hero image

Teach Science & Beyond

Average Rating4.77
(based on 37 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

162k+Views

98k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A Level Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

A Level Organic Chemistry (OCR)

18 Resources
17 well structured chemistry lessons plus a BONUS revision summary covering topics in Module 6 of the OCR Specification: **Organic Chemistry ** *Note: Lessons on Analysis: chromatography, qualitative analysis of functional groups and NMR spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Benzene and its Structure To describe the Kekulé model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the Kekulé model of benzene and the delocalised model of benzene To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Lesson 2: Naming Aromatic Compounds To state the IUPAC name of substituted aromatic compounds Construct the structure of aromatic compounds based on their IUPAC names To analyse the correct numbering system for di and trisubstituted aromatic compounds Lesson 3: The Reactions of Benzene To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Lesson 4: Phenols To recall and explain the electrophilic substitution reactions of phenol: with bromine to form 2,4,6-tribromophenol (ii) with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Lesson 5: Directing Groups in Aromatic Compounds To understand the 2- and 4-directing effect of electron- donating groups (OH, NH2) and the 3-directing effect of electron-withdrawing groups (NO2) in electrophilic substitution of aromatic compounds To predict the substitution products of aromatic compounds by directing effects in organic synthesis Lesson 6: Reactions of Carbonyl Compounds To understand the oxidation of aldehydes using Cr2O72-/H+ to form carboxylic acids To understand nucleophilic addition reactions of carbonyl compounds with: NaBH4 to form alcohols HCN (NaCN (aq)/H+ (aq)) to form hydroxynitriles To construct the mechanism for nucleophilic addition reactions of aldehydes and ketones with NaBH4 and HCN Lesson 7: Testing for Carbonyl Compounds To understand the use of Tollens’ reagent to: (i) detect the presence of an aldehyde group (ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver To understand the use of 2,4-dinitrophenylhydrazine to: (i) detect the presence of a carbonyl group in an organic compound (ii) identify a carbonyl compound from the melting point of the derivative Lesson 8: Carboxylic acids and Esters To explain the water solubility of carboxylic acids in terms of hydrogen bonding To recall the reactions in aqueous conditions of carboxylic acids with metals and bases (including carbonates, metal oxides and alkalis) To know the esterification of: (i) carboxylic acids with alcohols in the presence of an acid catalyst (ii) acid anhydrides with alcohols To know the hydrolysis of esters: (i) in hot aqueous acid to form carboxylic acids and alcohols (ii) in hot aqueous alkali to form carboxylate salts and alcohols Lesson 9: Acyl Chlorides and Their Reactions To know how to name acyl chlorides To recall the equation for the formation of acyl chlorides from carboxylic acids using SOCl2 To construct equations for the use of acyl chlorides in the synthesis of esters, carboxylic acids and primary and secondary amides Lesson 10: Introduction to Amines To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Lesson 11: Preparation of Amines To know the reaction steps involved in the preparation of aromatic amines by reduction of nitroarenes using tin and concentrated hydrochloric acid To know the reaction steps involved in the preparation of aliphatic amines by substitution of haloalkanes with excess ethanolic ammonia or amines To explain the reaction conditions that favours the formation of a primary aliphatic amine To explain the reaction conditions that favours the formation of a quaternary ammonium salt Lesson 12: Amino Acids and Their Reactions To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Lesson 13: Chirality To know that optical isomerism is an example of stereoisomerism, in terms of non- superimposable mirror images about a chiral centre To identify chiral centres in a molecule of any organic compound. To construct 3D diagrams of optical isomers including organic compounds and transition metal complexes Lesson 14: Amides To review the synthesis of primary and secondary amides To understand the structures of primary and secondary amides To name primary and secondary amides Lesson 15: Condensation Polymers To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Lesson 16: Practical Skills in Organic Synthesis (Yr13) To describe the techniques and procedures used for the purification of organic solids including: filtration under reduced pressure recrystallisation measurement of melting points Lesson 17: Synthetic Routes in Organic Synthesis (Y13) To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of organic molecules containing several functional groups To create multi-stage synthetic routes for preparing organic compounds Synthetic Routes Revision Summary A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable Reaction summaries include: nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions* Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Core Organic Chemistry (OCR)
TeachScienceBeyondTeachScienceBeyond

Core Organic Chemistry (OCR)

20 Resources
20 well structured chemistry lessons covering topics in Module 4 of the OCR Specification: **Core Organic Chemistry ** *(Note: Lessons on Analytical techniques: IR and Mass spectroscopy are sold as a separate bundle in my shop) * Lesson 1: Organic and Inorganic Compounds To describe what organic and inorganic compounds are 2 To compare the strength of bonds in organic and inorganic compounds To explain the molecular shape of carbon containing compounds Lesson 2: Naming organic compounds To know the IUPAC rules for naming alkanes and alkenes To know the IUPAC rules for naming aldehyde, ketones and carboxylic acids To construct structural or displayed formulae from named organic compounds and name organic compounds from the structural or displayed formulae Lesson 3: Types of formulae To know what is meant by the terms empirical and molecular formula To compare the terms general, structural, displayed and skeletal formula To construct organic compounds using either of the 6 types of formulae Lesson 4: Isomers To describe what structural isomers and stereoisomers are To construct formulae of structural isomers of various compounds To construct formulae of E-Z and cis-trans stereoisomers of alkenes Lesson 5: Introduction To Reaction Mechanisms To understand that reaction mechanisms are diagrams that illustrate the movement of electrons using curly arrows To understand where curly arrows being and where they end To identify and illustrate homolytic and heterolytic bond fission in reaction mechanisms Lesson 6: Properties of Alkanes To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate To explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion To describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces Lesson 7: Combustion of Alkanes To understand why alkanes are good fuels To recall the equations (both word and symbol) for complete combustion of alkanes To recall the equations (both word and symbol) for incomplete complete combustion of alkanes Lesson 8: Free Radical Substitution of Alkanes To know what a free radical is To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products Lesson 9: The Properties of Alkenes 1.To know the general formula of alkenes 2. To explain the shape and bond angle around each carbon atom of a C=C bond 3. To describe how π and σ bonds are formed in alkenes Lesson 10: Addition Reactions of Alkenes To know what an electrophile is To describe what an electrophilic addition reaction is To outline the mechanism for electrophilic addition Lesson 11: Addition Polymerisation To know the repeat unit of an addition polymer deduced from a polymer To identify the monomer that would produce a given section of an addition polymer To construct repeating units based on provided monomers Lesson 12: Dealing with Polymer Waste To understand the benefits for sustainability of processing waste polymers by: Combustion for energy production Use as an organic feedstock for the production of plastics and other organic chemicals Removal of toxic waste products such as HCl To understand the benefits to the environment of development of biodegradable and photodegradable polymers Lesson 13: Properties of Alcohols To identify and explain the intermolecular forces that are present in alcohol molecules To explain the water solubility of alcohols, their low volatility and their trend in boiling points To classify alcohols as primary, secondary or tertiary alcohols Lesson 14: Oxidation of Alcohols To know that alcohols can undergo combustion reactions in the presence of oxygen To know alcohols can be oxidised by an oxidising agent called acidified potassium dichromate To know the products and reaction conditions for the oxidation of primary alcohols to aldehydes and carboxylic acids To know the products and reaction conditions for the oxidation of secondary alcohols to ketones Lesson 15: Other Reactions of Alcohols To know the elimination of H2O from alcohols in the presence of an acid catalyst and heat to form alkenes To know the substitution of alcohols with halide ions in the presence of acid to form haloalkanes Lesson 16: Haloalkanes and their Reactions (part 1) To define and use the term nucleophile To outline the mechanism for nucleophilic substitution of haloalkanes Lesson 17: Haloalkanes and their Reactions (part 2) To explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds To describe how the rate of hydrolysis of haloalkanes can be determined by experiment using water, ethanol and silver nitrate solution Lesson 18: Haloalkanes and the environment To know how halogen radicals are produced from chlorofluorocarbons (CFCs) by the action of UV radiation To construct equations for the production of halogen radicals from CFCs To construct equations for the catalysed breakdown of ozone by Cl. and other radicals (NO.) Lesson 19: Practical skills for organic synthesis To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux To understand the techniques for preparation and purification of an organic liquid including: Lesson 20: Synthetic routes in organic synthesis To identify individual functional groups for an organic molecule containing several functional groups To predict the properties and reactions of an organic molecule containing several functional groups To create two-stage synthetic routes for preparing organic compounds Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Maths Skills in A Level Chemistry (AQA)
TeachScienceBeyondTeachScienceBeyond

Maths Skills in A Level Chemistry (AQA)

(1)
Maths skills are a key component in all A level chemistry exam papers therefore this resource is fundamental in supporting your students to be A level Chemistry Exam ready (Note:**This resource is suitable for students studying the AS or A Level AQA Exam Board). ** This resource can be completed as a lesson (~2-3 hrs required) or more conveniently it can be set as homework for students to complete independently. This resource can also be presented to students in small segments across the A level course. After completing the resource students will be have a strong understanding of the following maths skills: **1. Standard form 2. Significant Figures 3. Significant Figures in Chemistry Questions 4. Decimal Places 5. Percentage Uncertainty 6. Average/Mean 7. Unit Conversions ** A PowerPoint presentation is included in this resource for teachers to go through worked examples with students. Model answers to practice questions are also included in the PowerPoint presentation. A student workbook is also included in this resource - in this workbook space has been provided for students can make key notes about each math skill. Practice questions are also included in the workbook and space has been provided for students to complete their answers. Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Types of Formulae
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Types of Formulae

(1)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on Types of Formulae. Resources also include a personal information sheets for students as well as a fill out sheet students fill in throughout the lesson on the different types of formulae By the end of the lesson students should be able to: Know what is meant by the terms empirical and molecular formula Compare the terms general, structural, displayed and skeletal formula Construct organic compounds using either of the 6 types of formulae Students will be able to take rich notes on types of formulae, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding of the how to calculate types of formulae by carrying our mini AfL tasks either on mini white boards or in students’ books The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Buffer Solution Calculations 1 (OCR)
TeachScienceBeyondTeachScienceBeyond

Buffer Solution Calculations 1 (OCR)

(1)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Buffer Solution Calculations (Suitable for the OCR Specification) By the end of this lesson KS5 students should be able to: To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Kinetics: Concentration-Time Graphs (part 2)
TeachScienceBeyondTeachScienceBeyond

Kinetics: Concentration-Time Graphs (part 2)

(1)
A structured Year 13 KS5 lesson ( lesson 2 of 2) on Concentration-Time Graphs. Lesson includes starter activity, worked examples and Afl quiz By the end of this lesson KS5 students should be able to: To deduce zero & first order reactants from concentration-time graphs To calculate the rate constant of a first order reactant using their half-life Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
pH of Weak Acids (AQA)
TeachScienceBeyondTeachScienceBeyond

pH of Weak Acids (AQA)

(1)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on the pH of weak acids. Suitable for the AQA specification By the end of this lesson KS5 students should be able to: To recall the expression of pH for weak monobasic acids To calculate the pH of weak monobasic acids using approximations Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Carbon-13 NMR Spectroscopy
TeachScienceBeyondTeachScienceBeyond

Carbon-13 NMR Spectroscopy

(1)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carbon-13 NMR Spectroscopy By the end of this lesson KS5 students should be able to: To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about: The number of carbon environments in the molecule The different types of carbon environment present from chemical shift values Possible structures for the molecule Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Proton NMR Spectroscopy (Part 1)
TeachScienceBeyondTeachScienceBeyond

Proton NMR Spectroscopy (Part 1)

(1)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 1) NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 2) By the end of this lesson KS5 students should be able to: To analyse proton NMR spectra of an organic molecule to make predictions about: The number of proton environments in the molecule The different types of proton environment present from chemical shift values Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Proton NMR Spectroscopy (Part 2)
TeachScienceBeyondTeachScienceBeyond

Proton NMR Spectroscopy (Part 2)

(1)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on proton NMR Spectroscopy (part 2) NOTE: This lesson can be purchased as a bundle with proton NMR Spectroscopy (part 1) By the end of this lesson KS5 students should be able to: To analyse proton NMR spectra of an organic molecule to make predictions about: The different types of proton environment present from chemical shift values The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule Possible structures for the molecule 2 Bonus Questions on Combined Techniques are also included in this lesson! Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Introduction to Amines
TeachScienceBeyondTeachScienceBeyond

Introduction to Amines

(1)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) an Introduction to Amines By the end of this lesson KS5 students should be able to: To know how to name amines using IUPAC rules To understand the basicity of amines in terms of proton acceptance by the nitrogen lone pair To understand the reactions of amines with dilute inorganic acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Isomers (AQA)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Isomers (AQA)

(1)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on isomers (structural isomers and stereoisomers). Suitable for the AQA specification By the end of the lesson students should be able to: Know the what structural isomers and stereoisomers are Describe the three different ways in which structural isomers can occur Construct formulae of positional, functional group or chain isomers and stereosiomers of alkenes Students will be able to take rich notes on isomers, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding on isomers by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Introduction To Reaction Mechanisms
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Introduction To Reaction Mechanisms

(1)
Well structured KS5 Lesson on the introduction to reaction mechanisms in organic chemistry for Year 12 students. The lesson contains starter activities, discussion questions and mini AfL quizzes and questions, all with answers included By the end of the lesson students should: Understand that reaction mechanisms are diagrams that illustrate the movement of electrons using curly arrows Understand where curly arrows being and where they end Identify and illustrate homolytic and heterolytic bond fission in reaction mechanisms Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Reactions of Carbonyl Compounds
TeachScienceBeyondTeachScienceBeyond

Reactions of Carbonyl Compounds

(1)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the Reactions of Carbonyl Compounds. Suitable for OCR A level Chemistry By the end of this lesson KS5 students should be able to: To understand the oxidation of aldehydes using Cr2O72-/H+ to form carboxylic acids To understand nucleophilic addition reactions of carbonyl compounds with: NaBH4 to form alcohols HCN (NaCN (aq)/H+ (aq)) to form hydroxynitriles To construct the mechanism for nucleophilic addition reactions of aldehydes and ketones with NaBH4 and HCN Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Electronegativity & Bond Polarity
TeachScienceBeyondTeachScienceBeyond

Electronegativity & Bond Polarity

(1)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Electronegativity and Bond Polarity By the end of this lesson KS5 students should be able to: To define the term electronegativity To explain the trend in electronegativity down a group and across a period To explain what a polar covalent bond is bond and to illustrate this type of bond in a molecule Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A Level Chemistry Keywords (Year 13)
TeachScienceBeyondTeachScienceBeyond

A Level Chemistry Keywords (Year 13)

(0)
A useful list of all the keywords and definitions students will be introduced to during the OCR A, A level Chemistry Specification in Year 13. (NOTE: This document can also be used and adjusted as necessary for other specifications such as AQA and Edexcel, as there is a large overlap in the topics taught across these specifications) A printable flashcard revision of this resource can be found in my shop here: /teaching-resource/resource-12891372
Flashcards: Qualitative Analysis, Group 2 & The Halogens
TeachScienceBeyondTeachScienceBeyond

Flashcards: Qualitative Analysis, Group 2 & The Halogens

(0)
13 flashcards on reactions and observations (if applicable) on: –> Qualiative analysis tests for the following ions: carbonate, sulfate, barium, halides, ammonium –> Group 2 element reactions with acids, water and oxygen –> Group 2 compound reactions with acids and water. The uses of these reactions are also included –> Colours of halogens in their natural state, in water or cyclohexane –> Displacement reaction of halogens with metal halides –> Disproportation reactions of chlorine Instructions For Printing - Print these flashcards 4 pages per sheet, one sided preferrably on A4 card Treasury tags will be needed to keep the flashcards together
A Level Chemistry Keywords (Year 12)
TeachScienceBeyondTeachScienceBeyond

A Level Chemistry Keywords (Year 12)

(0)
A useful list of all the keywords and definitions students will be introduced to during the OCR A, A level Chemistry Specification in Year 12. (NOTE: This document can also be used and adjusted as necessary for other specifications such as AQA and Edexcel, as there is a large overlap of topics taught across these specifications) A printable flashcard revision of this resource can be found in my shop here: /teaching-resource/resource-12890451
Flashcards on Transition Elements & Redox
TeachScienceBeyondTeachScienceBeyond

Flashcards on Transition Elements & Redox

(0)
24 Flashcards on Transition Elements & Redox Reactions. Based on the OCR A level Chemistry Specification Point 5.3.1 Students will be able to: Recall the reactions, including ionic equations, and the accompanying colour changes of aqueous Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ with aqueous sodium hydroxide and aqueous ammonia, including: (i) precipitation reactions (ii) complex formation with excess aqueous sodium hydroxide and aqueous ammonia Interpret the redox reactions using relevant half equations and oxidation numbers for the: interconversions between Fe2+ and Fe3 interconversions between Cr3+ and Cr2 O 72– reduction of Cu2+ to Cu+ and 2 7 disproportionation of Cu+ to Cu2+ and Cu **Instructions for Printing: Print these flashcards 4 pages per sheet, one sided (preferrably on A4 card). Treasury tags will be needed to keep the flashcards together **
Flashcards: Shapes of molecules and ions
TeachScienceBeyondTeachScienceBeyond

Flashcards: Shapes of molecules and ions

(0)
11 flashcards on shapes of molecules and ions: –> Shapes included: Tetrahedral, Trigonal Planar, Linear, Non-linear, Octahedral, Trigonal Pyramidal, Trigonal Bipyramidal –> Examples and diagrams included –> Key terms explained –> Electron pair replusion order included Instructions For Printing: Print these flashcards 4 pages per sheet, one sided, preferrably on A4 card Treasury tags will be needed to keep the flashcards together