Hero image

GJHeducation's Shop

Average Rating4.51
(based on 932 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1427k+Views

2221k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
UNIT 1 REVISION (Edexcel Int A-level bio)
GJHeducationGJHeducation

UNIT 1 REVISION (Edexcel Int A-level bio)

(1)
This detailed and engaging lesson supports students with their revision in the build up to their UNIT 1 mocks or final assessment. The wide range of tasks and activities will challenge them on their knowledge of Molecules, Diet, Transport and Health (topics 1 and 2) of the Edexcel International A-level biology specification, allowing them to identify any areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: The nature of the genetic code Globular and fibrous proteins Protein structure Haemoglobin and the affinity for oxygen The role of the heart valves in the cardiac cycle The course of events that lead to atherosclerosis Passive and active transport DNA replication The structure and function of starch Genetic terminology Codominance Sex-linked diseases Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic.
PAPER 4 REVISION (CIE A-level biology)
GJHeducationGJHeducation

PAPER 4 REVISION (CIE A-level biology)

(0)
This detailed lesson will support students with their revision for the PAPER 4 mocks or final assessment. The wide range of tasks and activities will challenge their knowledge and understanding of topics 12 - 19 of the CIE A-level biology specification (for assessment in 2025 - 27), allowing them to identify those areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and 34 short-answer understanding checks and all answers are embedded into the PowerPoint. As shown in the cover image, there are several quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: Directional, disruptive and stabilising selection The evolution of antibiotic resistance Allopatric and sympatric speciation The Founder effect and genetic bottlenecks The Hardy-Weinberg principle Genetic terminology Calculating phenotypic ratios for sex-linked disease and alleles demonstrating codominance Autosomal linkage The events of meiosis which contribute to genetic variation Calculating the chi-squared value Mutations Gel electrophoresis The lac operon as an example of the control of protein production The three-domain system Classification taxa Saltatory conduction Structure of neurones The function of cholinergic synapses The role of abscisic acid and calcium ions in the response to water stress Skeletal muscle contraction Aerobic respiration The connection between the light-dependent and light-independent stages of photosynthesis Calculating the Simpson’s index of diversity Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with many tasks so it is estimated that it will take over 4 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic. If you would like to view the quality of my revision lessons before buying, then download the PAPER 1 & 2 REVISION lesson as this has been shared for free.
PAPER 2 REVISION (OCR A level biology A)
GJHeducationGJHeducation

PAPER 2 REVISION (OCR A level biology A)

(0)
This detailed lesson has been designed to support students when revising for their PAPER 2 (Biological diversity) mocks or final assessment. The wide range of tasks and activities will challenge their knowledge and understanding of modules 1, 2, 4 and 6 of the OCR A-level biology A specification, allowing them to identify any areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and 25 short-answer understanding checks and all answers are embedded into the PowerPoint. As shown in the cover image, there are several quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: Directional, disruptive and stabilising selection The evolution of antibiotic resistance Allopatric and sympatric speciation The Founder effect and genetic bottlenecks The Hardy-Weinberg principle Genetic terminology Calculating phenotypic ratios for sex-linked disease and alleles demonstrating codominance Autosomal linkage Calculating the chi-squared value Movement of molecules across cell membranes The lac operon as an example of the control of gene expression at a transcriptional level Types of immunity The role of antigen-presenting cells The role of T and B cells in the primary immune response Communicable diseases in animals and plants Calculating genetic diversity Calculating the Simpson’s index of diversity Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic. If you would like to view the quality of my revision lessons before buying, then download the PAPER 1 REVISION lesson as this has been shared for free.
PAPER 1 REVISION (OCR A-level biology A)
GJHeducationGJHeducation

PAPER 1 REVISION (OCR A-level biology A)

(1)
This detailed and engaging lesson supports students with their revision in the build up to their PAPER 1 (Biological processes) mocks or final assessment. The wide range of tasks and activities will challenge them on their knowledge of modules 1, 2, 3 and 5 of the OCR A-level biology A specification, allowing them to identify any areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: The nature of the genetic code Globular and fibrous proteins Protein structure The role of the heart valves in the cardiac cycle The conduction system of the heart The autonomic control of heart rate The mitotic cell cycle DNA replication The events of meiosis that contribute to genetic variation The structure of starch and cellulose The light-dependent and light-independent reactions of photosynthesis The ultrastructure of eukaryotic cells Calculating the size of an object under the optical microscope Saltatory conduction The structure and function of sensory and motor neurones Depolarisation and the initiation of an action potential Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic. If you and your students enjoy this lesson and find it beneficial, a revision challenging the content of modules 1, 2, 4 & 6 as assessed in PAPER 2 (Biological diversity) has also been uploaded.
PAPER 1 & 2 REVISION (CIE A-level bio)
GJHeducationGJHeducation

PAPER 1 & 2 REVISION (CIE A-level bio)

(0)
This detailed and engaging lesson will support students with their revision in the build up to their PAPER 1 & 2 mocks or final assessments. The wide range of tasks and activities will challenge students on their knowledge of topics 1 - 11 of the CIE A-level biology specification (for assessment in 2025 - 27), allowing them to identify any areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: The nature of the genetic code The structure of haemoglobin and collagen Fibrous and globular proteins The roles of the heart valves in the cardiac cycle The changes in the quantity of DNA through the mitotic cell cycle The role of DNA polymerase and DNA ligase in DNA replication The behaviour of chromosomes during prophase, metaphase, anaphase and telophase The importance of mitosis for living organisms The bonds formed during translation The structure of starch and cellulose The ultrastructure of eukaryotic cells Calculating the size of an object under an optical microscope Using the image = actual x magnification formula The role of APCs and T helper cells in the immune response Pathogens which cause infectious diseases Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with multiple tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use small sections in shorter lessons to focus on a specific topic.
PAPER 2 REVISION (Edexcel A-level bio B)
GJHeducationGJHeducation

PAPER 2 REVISION (Edexcel A-level bio B)

(0)
This detailed and engaging lesson supports students with their revision in the build up to their PAPER 2 mocks or final assessment. The wide range of tasks and activities will challenge students on their knowledge and understanding of the content of topics 1 - 4 and 8 - 10 of the Edexcel A-level biology B specification, allowing them to identify those areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. As shown in the cover image, there are several quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: Directional, disruptive and stabilising selection Saltatory conduction The structure of neurones Depolarisation and the initiation of an action potential Hardy-Weinberg principle The Founder effect and population bottlenecks Genetic terminology Codominance Sex linkage and autosomal linkage Chi squared test Myoglobin vs haemoglobin Succession The sympathetic and parasympathetic divisions of the ANS The control of heart rate The functions of the different parts of the brain This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic. If the students find this lesson useful, there is also a PAPER 1 REVISION lesson uploaded which challenges the content of topics 1 - 7.
Edexcel A-level bio B PAPER 1 REVISION
GJHeducationGJHeducation

Edexcel A-level bio B PAPER 1 REVISION

(0)
This detailed and engaging lesson will support students to revise in the build up to their PAPER 1 mocks or final assessment. The wide range of tasks and activities will challenge students on their knowledge of topics 1 - 7 of the Edexcel A-level biology B specification, allowing them to recognise those areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: The nature of the genetic code Classification hierarchy and the binomial name The meaning of a biological species The three-domain model DNA triplets and mRNA codons The structure of haemoglobin and collagen Fibrous and globular proteins The roles of the heart valves in the cardiac cycle The enzymes in DNA replication The role of meiosis in genetic variation The structure of starch and cellulose The ultrastructure of eukaryotic cells The light-dependent and light-independent reactions of photosynthesis The role of APCs and T helper cells in the immune response The evolution of antibiotic resistance Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use small sections in shorter lessons to focus on a specific topic.
PAPER 1 REVISION (Edexcel SNAB)
GJHeducationGJHeducation

PAPER 1 REVISION (Edexcel SNAB)

(0)
This detailed lesson has been intricately planned to support students with their revision in the build up to their PAPER 1 mocks or final assessment. The wide range of tasks and activities will challenge students on their knowledge of topics 1 - 6 of the Pearson Edexcel A-level biology A specification, allowing them to recognise those areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: The nature of the genetic code Classification hierarchy The three-domain model DNA triplets and mRNA codons The structure of haemoglobin and collagen Fibrous and globular proteins The roles of the heart valves in the cardiac cycle The enzymes in DNA replication The role of meiosis in genetic variation The structure of starch and cellulose The ultrastructure of eukaryotic cells The light-dependent and light-independent reactions of photosynthesis The role of APCs and T helper cells in the immune response The evolution of antibiotic resistance Many of the tasks have been differentiated to maintain challenge whilst providing access to all. This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic. A lesson revising PAPER 2 content (topics 1 - 4, 7 & 8) has also been uploaded.
PAPER 2 REVISION (Edexcel SNAB)
GJHeducationGJHeducation

PAPER 2 REVISION (Edexcel SNAB)

(0)
This detailed lesson has been intricately planned to support student revision in the build up to their PAPER 2 mocks or final assessment. The wide range of tasks and activities will challenge students on their knowledge of topics 1 - 4, 7 & 8 of the Pearson Edexcel A-level biology A specification, allowing them to recognise those areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: Allopatric and sympatric speciation Saltatory conduction The structure of neurones Depolarisation and the initiation of an action potential Hardy-Weinberg principle Genetic terminology Sex linkage and autosomal linkage Aerobic respiration The lower yield of ATP from anaerobic respiration The sliding filament model of muscle contraction The ultrastructure of skeletal muscle Slow and fast twitch muscle fibres The control of heart rate The functions of the different parts of the brain Calculating cardiac output Gene expression as demonstrated by the lac operon The events of atherosclerosis Epigenetics This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic.
PAPER 1 REVISION (AQA A-level biology)
GJHeducationGJHeducation

PAPER 1 REVISION (AQA A-level biology)

(0)
This lesson will support students with their revision in the build up to the AQA A-level biology PAPER 1 mocks or final assessments. The lesson includes a wide variety of tasks and activities which will engage and motivate students whilst challenging their knowledge and understanding of the content of topics 1 - 4, allowing them to identify any gaps so they can be addressed before the assessments. These tasks include exam-style questions and understanding checks and all answers are embedded into the PowerPoint. Several of these questions challenge their mathematical skills, to prepare them for the volume of marks that will be assigned to this aspect of the course. There are also quick quiz rounds and guided discussion periods to allow students to support each other, and some of the accompanying resources have been differentiated to allow access to the content for all. The following content is directly covered by this revision lesson: The nature of the genetic code Classification hierarchy The structure of proteins Cardiac output The roles of enzymes in DNA replication The events of meiosis which contribute to genetic variation The relationship between structure and function in plant polysaccharides The structure and function of organelles Cell fractionation Calculating the size of an object under an optical microscope Using the image = actual x magnification formula Types of immunity Understanding whether data is significantly different or not The role of macrophages in the immune response The evolution of antibiotic resistance The lesson finishes with a round of BLOCKBUSTERS, where students are challenged to recognise 17 key terms from across topics 1 - 4, which weren’t directly covered by the earlier part of the lesson. If you are happy with the quality of this revision lesson, a lesson challenging content from topics 5 - 8 for PAPER 2 has also been uploaded.
Role of plant hormones (OCR A-level bio)
GJHeducationGJHeducation

Role of plant hormones (OCR A-level bio)

(0)
This lesson describes the role of plant hormones in stomatal closure, leaf loss in deciduous plants and seed germination. The extensive and detailed PowerPoint and accompanying resources have been planned to cover the content of point b of module 5.1.5 of the OCR A-level biology A specification. The start of the lesson challenges the students to identify three leaf cells in the list of 11 leaf structures. This introduces guard cells and then the opening between them, the stomatal aperture. Time is taken to go through the process by which the apertures are opened to allow carbon dioxide to diffuse into the leaf for photosynthesis. This provides students with an insight into the movement of potassium ions and water when they are challenged about the closure of these openings in response to water stress. Students will meet abscisic acid and understand how this acts as the first messenger, before calcium ions act as the second messenger to trigger events on the inside of the guard cells. Moving forwards, the role of ethene and auxins in leaf loss and gibberellins in seed germination are described and explained. Multiple opportunities are taken to challenge students on their prior knowledge as well as their current understanding and all answers are embedded into the PowerPoint. This lesson is extensive and it is estimated that it will take 2-3 hours of teaching time to go through all of the tasks and content.
Sensory receptor cells (CIE A-level bio)
GJHeducationGJHeducation

Sensory receptor cells (CIE A-level bio)

(0)
This lesson outlines the role of sensory receptor cells in the detection of stimuli and describes the generation of an impulse in a sensory neurone. The PowerPoint and accompanying resources have been planned to cover points 4 & 5 of topic 15.1 of the CIE A-level biology specification (for assessment in 2025-27) and use the chemoreceptors in taste buds as the example to describe the sequence of events. The previous lesson described the structure and function of sensory and motor neurones and the 1st task challenges the students on their recall of this content to generate the key term, stimuli. Students will recall that this is a change in the environment and that sensory receptor cells are responsible for the detection of these changes. A quick quiz round called “REACT” introduces several stimuli and then students will learn that sensory receptor cells act as specialised transducers by converting one form of energy into electrical energy. Students are introduced to key terms which will be covered in greater detail in upcoming lessons, including resting potential and depolarisation, and they will be challenged to use these in the final task of the lesson. The Pacinian corpuscle is shown and its role in the detection of pressure described, including how sodium ions enter the generator region of the sensory neurone. The remainder of the lesson describes the sequence of events that result in the conduction of an action potential along a sensory neurone after the detection of new chemicals by chemoreceptors in taste buds.
Topic 15: Control and coordination (CIE A-level biology)
GJHeducationGJHeducation

Topic 15: Control and coordination (CIE A-level biology)

12 Resources
These 12 lessons cover points 15.1 (1, 3, 4, 5, 6, 7, 9, 10, 11 & 12) and 15.2 (1, 2 & 3) from topic 15 of CIE A-level biology specification (for assessment in 2025 - 27). This topic is titled control and coordination and concerns comparisons between the endocrine and nervous system in mammals, and then the key structure of the nervous system before looking at this control in plants. Each lesson has been extensively planned and contains a wide range of engaging activities and tasks, interspersed with current and prior knowledge checks. The sensory, motor & intermediate neurones and cholinergic synapses lessons have been shared for free, if you want to download first to get an idea for the quality of these lessons.
Endocrine system (CIE A-level biology)
GJHeducationGJHeducation

Endocrine system (CIE A-level biology)

(0)
This lesson describes the features of the endocrine system, focusing on the differing actions of peptide and steroid hormones at target cells. The detailed PowerPoint and accompanying resources have been primarily designed to cover point (1) of topic 15.1 of the CIE A-level biology specification but can also be used as a revision tool to check on their knowledge of the role of glucagon in the homeostatic control of blood glucose concentration from topic 14 whilst introducing transcription factors which will be covered in topic 16. Students should have a base knowledge of the endocrine system from GCSE and topic 14 so this lesson has been planned to build on that knowledge and to add the detail needed at this level. The lesson begins by challenging this knowledge to check that they understand that endocrine glands secrete these hormones directly into the blood. Students will learn that most of the secreted hormones are peptide (or protein) hormones and a series of exam-style questions are used to challenge them on their recall of the structure of insulin as well as to apply their knowledge to questions about glucagon. Moving forwards, the students are reminded that hormones have target cells that have specific receptor sites on the surface of their membrane. The relationship between a peptide hormone as a first messenger and a second messenger on the inside of the cell is described to allow students to recall how the activation of cyclic AMP triggers a cascade of events on the inside of the cell. The rest of the lesson focuses on steroid hormones and specifically their ability to pass through the membrane of a cell and to bind to transcription factors, as exemplified by oestrogen.
Homeostasis in plants (Topic 14.2 CIE A-level bio)
GJHeducationGJHeducation

Homeostasis in plants (Topic 14.2 CIE A-level bio)

2 Resources
This bundle covers the content of the 4 specification points in topic 14.2 of the CIE A-level biology specification, titled “Homeostasis in plants”. The 4 specification points concern the structure and function of guard cells as well as the role of abscisic acid and calcium ions in a plant’s response to water stress. The plant biology topics can be poorly understood by students, so both lessons have been filled with understanding checks so students can constantly assess their progress and address any knowledge gaps that arise.
Abscisic acid & stomata (CIE A-level)
GJHeducationGJHeducation

Abscisic acid & stomata (CIE A-level)

(0)
This lesson describes the role of abscisic acid in the closure of stomata during times of water stress, including the role of calcium ions. The PowerPoint and accompanying resources have been planned to cover the content of point (4) of topic 14.2 of the CIE A-level biology specification (for assessment in 2025-27). The lesson begins with an introduction of water stress and the description of the need for plants to adapt to these conditions because they can’t flee like animals can. A step-by-step guide underpins the lesson, consisting of 8 key steps in the mechanism. A series of tasks run alongside this, supporting the students with their understanding of key substances, such as abscisic acid, calcium ions, and potassium ions. There are multiple understanding checks, with answers embedded into the PowerPoint, to allow students to assess their own progress. There are also prior knowledge checks which encourage students to make links to previously covered content, including the response to a low blood glucose, and also the role of ions in living organisms. This lesson has been specifically designed to follow the lesson on guard cells and stomata, which is also uploaded.
Sensory, motor & intermediate neurones (CIE)
GJHeducationGJHeducation

Sensory, motor & intermediate neurones (CIE)

(0)
This lesson describes the structure and function of sensory and motor neurones as well as the role of intermediate neurones. The PowerPoint and accompanying resources have been planned to cover the content of point (3) of topic 15.1 of the CIE A-level Biology specification (for assessment in 2025 - 27) and also focuses on the organisation of the nervous system to support students with their understanding of upcoming content in this topic. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to introduce the importance of the myelin sheath that is present in both neurones to allow saltatory conduction to occur.
Topic 14: Homeostasis (CIE A-level biology)
GJHeducationGJHeducation

Topic 14: Homeostasis (CIE A-level biology)

9 Resources
This bundle of 9 lessons describes homeostasis in mammals and plants, explaining the content using real-world examples including osmoregulation and the control of blood glucose and the opening and closing of the stomatal apertures. The lessons have been planned at length and are filled with a wide variety of tasks which will engage and motivate the students whilst checking on their understanding of the following points from topic 14 of the CIE A-level biology specification (for assessment in 2025-27): 14.1: 1 - 10 14.2: 1 - 4 (ALL) The quality of the lessons can be experienced through the download of the osmoregulation lesson as this has been shared for free.
Guard cells & the stomata (CIE A-level)
GJHeducationGJHeducation

Guard cells & the stomata (CIE A-level)

(0)
This lesson describes the mechanism by which the guard cells open and close the stomatal apertures in response to changes in environmental conditions. The PowerPoint and accompanying resources have been designed to cover points 1, 2 and 3 as set out in topic 14.2 of the CIE A-level biology specification (for assessment in 2025 - 2027). The lesson begins with a plant biology check, where the students have to spot the structure which isn’t found in a leaf, and then to spot the three leaf cells. This reveals the palisade and spongy mesophyll cells, but most importantly the guard cells. In a change to the normal, this lesson considers the function of the guard cells first before the structure is considered, and an understanding of the relationship between the two is embedded. Students will understand that there’s a balance between the opening of the stomatal aperture to allow carbon dioxide to diffuse in for photosynthesis, with the closing to reduce transpiration losses. The students’ knowledge of photosynthesis and other related topics are challenged throughout, and answers to all of the questions are found in the PowerPoint to allow the students to assess their progress. The final part of the lesson describes the mechanism by which the guard cells open the stomata, including details of ATP, potassium ions and the movement of water by osmosis.
Using the retention factor (Ed. Int)
GJHeducationGJHeducation

Using the retention factor (Ed. Int)

(0)
This lesson describes how chloroplast pigments can be separated by chromatography and the pigments identified by Rf values. The PowerPoint and accompanying resource have been planned to cover point 5.7 of the Edexcel International A-level biology specification and to build and check on the knowledge acquired in the previous lesson on the absorption and action spectrum. The lesson begins with a challenge, where the students must recall that chromatography is the separation method that has a stationary and a mobile phase and then to realise that the chloroplast pigments could be separated using this technique. A step-by-step guide goes through the thin-layer chromatography process, and understanding and prior knowledge checks are used throughout to add key details. Moving forwards, the formula for the retention factor is provided, and the students are challenged to apply this formula to recognise the values for the chlorophylls and the carotenoids to allow them to be identified. All answers to the understanding and prior knowledge checks are embedded into the PowerPoint to allow students to assess their progress.