Hero image

Futurum Careers

Average Rating4.82
(based on 15 reviews)

Whether you’re a teacher of STEM, information technology, humanities, careers or social studies, we want to help you with all of these challenges and put the ‘wow’ into classrooms. We want to support you with resources that aim to engage all students regardless of their gender, ethnicity or background. There are multiple organisations and global initiatives that are focused on this mission, and our aim is to bring these resources together so that you can access them quickly and easily – For Free

702Uploads

78k+Views

51k+Downloads

Whether you’re a teacher of STEM, information technology, humanities, careers or social studies, we want to help you with all of these challenges and put the ‘wow’ into classrooms. We want to support you with resources that aim to engage all students regardless of their gender, ethnicity or background. There are multiple organisations and global initiatives that are focused on this mission, and our aim is to bring these resources together so that you can access them quickly and easily – For Free
Extraordinarily small materials with big world applications
Futurum_CareersFuturum_Careers

Extraordinarily small materials with big world applications

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom or shared with students online. This resource links to KS4 and KS5 Physics and Chemistry. It can also be used as a careers resource and links to Gatsby Benchmarks (UK): Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Professor Joshua Robinson, a materials scientist and engineer based at The Pennsylvania State University in the US. His research focuses on 2D materials, such as graphene, and he is now exploring other materials for next generation electronics. • This resource also contains an interview with Joshua and PhD students, Alex and Cindy. If you or your students have a question for them, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. The team will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Joshua’s research, and tasks them to imagine they are a PhD student in his lab. A Spanish translation of this resource is available through the link below. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
How can we build quantum electronics from atoms and molecules?
Futurum_CareersFuturum_Careers

How can we build quantum electronics from atoms and molecules?

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom or shared with students online. This resource links to KS4 and KS5 Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Jan Mol, an expert in quantum & nanoelectronics at the Queen Mary University of London, in the UK, who is trying to understand how electricity flows through individual atoms and molecules, with the aim of one day using them as electronic components. • This resource also contains an interview with Jan. If you or your students have a question for him, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Jan will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Jan’s research, and tasks them to think about the everyday devices that rely on quantum mechanics. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Discover the X-ray Materials Science (XMaS) project
Futurum_CareersFuturum_Careers

Discover the X-ray Materials Science (XMaS) project

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom or shared with students online. This resource links to KS4 and KS5 physics, chemistry and technology. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of the XMaS (X-ray Materials Science) research project. Head up by Professor Tom Hase from the University of Warwick alongside Professor Chris Lucas from the University of Liverpool in the UK, XMaS uses a synchrotron facility, a massive doughnut-shaped structure that accelerates electrons to high velocities. These electrons emit X-ray radiation, which can be used to study the tiniest intricate structures within all kinds of materials. What does this mean for society and our future? • Through XMaS, researchers are able to examine the behaviour of minute and hidden objects. This resource contains interviews with researchers who are investigating a wide range of societal challenges from tooth decay to photovoltaics in solar panels… from the Tudor warship Mary Rose to organic electronics…and from contraceptive devices to the behaviour of catalysts. If you or your students have a question for them, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. the researchers will reply! • You will also find details for numerous student outreach opportunities, including the XMaS Scientist Experience. This Experience is a UK competition for Year 12 female physics students aimed at encouraging female students into scientific careers where they are seriously under-represented. • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on the the work being undertaken through XMaS, and tasks them to think about how materials science impacts us all. • The PowerPoint summarises the key points in the article and can be used as a standalone resource or together with the article and activity sheet. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
WIE SIND DIE CHEMISCHEN ELEMENTE ENTSTANDEN?
Futurum_CareersFuturum_Careers

WIE SIND DIE CHEMISCHEN ELEMENTE ENTSTANDEN?

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom or shared with students online. This resource links to KS4 and KS5 German. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This German language teaching resource explains the work of Dr Maria Lugaro of the Konkoly Observatory, Research Centre for Astronomy and Earth Sciences in Hungary. Maria is a nuclear astrophysicist who is part of an international and interdisciplinary team of scientists working on the RADIOSTAR project, investigating radioactive nuclei and the clues they left behind in meteorites. • This resource also contains an interview with Maria. If you or your students have a question for her, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Maria will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Maria’s research, and tasks them make their own spectrometer. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
HOGYAN KELETKEZTEK A KÉMIAI ELEMEK?
Futurum_CareersFuturum_Careers

HOGYAN KELETKEZTEK A KÉMIAI ELEMEK?

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom or shared with students online. This resource links to KS4 and KS5 Hungarian. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This Hungarian language teaching resource explains the work of Dr Maria Lugaro of the Konkoly Observatory, Research Centre for Astronomy and Earth Sciences in Hungary. Maria is a nuclear astrophysicist who is part of an international and interdisciplinary team of scientists working on the RADIOSTAR project, investigating radioactive nuclei and the clues they left behind in meteorites. • This resource also contains an interview with Maria. If you or your students have a question for her, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Maria will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Maria’s research, and tasks them make their own spectrometer. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
HOE ZIJN DE CHEMISCHE ELEMENTEN ONTSTAAN?
Futurum_CareersFuturum_Careers

HOE ZIJN DE CHEMISCHE ELEMENTEN ONTSTAAN?

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom or shared with students online. This resource links to KS4 and KS5 Dutch. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This Dutch language teaching resource explains the work of Dr Maria Lugaro of the Konkoly Observatory, Research Centre for Astronomy and Earth Sciences in Hungary. Maria is a nuclear astrophysicist who is part of an international and interdisciplinary team of scientists working on the RADIOSTAR project, investigating radioactive nuclei and the clues they left behind in meteorites. • This resource also contains an interview with Maria. If you or your students have a question for her, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Maria will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Maria’s research, and tasks them make their own spectrometer. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
¿CÓMO NACIERON LOS ELEMENTOS QUÍMICOS?
Futurum_CareersFuturum_Careers

¿CÓMO NACIERON LOS ELEMENTOS QUÍMICOS?

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom or shared with students online. This resource links to KS4 and KS5 Spanish. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This Spanish language teaching resource explains the work of Dr Maria Lugaro of the Konkoly Observatory, Research Centre for Astronomy and Earth Sciences in Hungary. Maria is a nuclear astrophysicist who is part of an international and interdisciplinary team of scientists working on the RADIOSTAR project, investigating radioactive nuclei and the clues they left behind in meteorites. • This resource also contains an interview with Maria. If you or your students have a question for her, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Maria will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Maria’s research, and tasks them make their own spectrometer. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Astronomy technology: building a camera to see the first galaxies
Futurum_CareersFuturum_Careers

Astronomy technology: building a camera to see the first galaxies

(0)
Suitable for 14-19-year olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Physics and Technology. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Sam Rowe of Cardiff University, UK, and Dr Víctor Gómez and Marcial Tapia of the National Institute of Astrophysics, Optics and Electronics, Mexico. They are using their skills in physics, electronics and engineering to build a new camera to be installed at an astronomical telescope. • This resource also contains interviews with the team. If your students have questions for Sam, Víctor or Marcial, they can send them to them online. All they need to do is to go to the article online (see the Futurum link below), scroll down to the end and type in the question(s). The team will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on the team’s research and challenges them to identify constellations of stars in the night sky. • The article and activity sheets are also available in Spanish, use the link below to access the translated versions. • An animation with downloadable script about the team’s work is available from the link below. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Physics: What can water, polystyrene balls and an ultra-fast laser tell us about the universe?
Futurum_CareersFuturum_Careers

Physics: What can water, polystyrene balls and an ultra-fast laser tell us about the universe?

(0)
Suitable for secondary, high school and college students, this article and accompanying activity sheet can be used in the classroom, school clubs and at home. This resource links to KS4 and KS5 physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • Though life and the universe are pretty complex, there are underlying rules that govern how they work. Uncovering them is no easy task, but Dr Serim Ilday and her team at Bilkent University in Turkey believe they have cracked an important one. Using simple ingredients – water, polystyrene balls and an ultra-fast laser – they have uncovered some fascinating universal truths, which have very promising real-world applications. • This resource also includes an interview with Serim about her career path. She has won several awards, one of which is the 'Oreal-Unesco Award for Women in Science. If your students (or you) have questions for Serim, you/they can send them to her online. All you need to do is to go to the article online (see the Futurum link below), scroll down to the end and type in the question(s). Serim will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) and activities to prompt students to reflect on Serim’s research. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
The challenge of modelling particle-laden flows
Futurum_CareersFuturum_Careers

The challenge of modelling particle-laden flows

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Physics, Mathematics and Engineering. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr S. Kokou Dadzie of Heriot-Watt University whose research is focused on modelling particle-laden flows, which could help improve air quality and help society meet clean energy generation goals. • This resource also contains an interview with Kokou. If you or your students have a question for him, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Kokou will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Kokou’s research, and tasks them to research the key milestones in the field of mechanical engineering. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
POLAR STAR: Teaching science as a whole
Futurum_CareersFuturum_Careers

POLAR STAR: Teaching science as a whole

(0)
The POLAR STAR project is designed to help teachers successfully introduce steam in their classes. It combines state-of-the-art pedagogies and exciting activities to teach ‘science as a whole’ and help teachers answer the “why do we have to learn this?” question. This resource links to KS2, KS3 and KS4 Science and Technology. It also contains interviews with teachers who are part of the POLAR STAR community. If you have a question for the POLAR STAR team, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. The team will reply. The information sheet provides all the links you need to access the POLAR resources, including teaching toolkits. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
How can hydrogen become a metal?
Futurum_CareersFuturum_Careers

How can hydrogen become a metal?

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Valentin Karasiev and Dr Suxing Hu, experts in high-energy-density physics based at the Laboratory for Laser Energetics, at the University of Rochester in the US. • This resource also contains an interview with Valentin. If you or your students have a question for him or Suxing, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. They will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy), to prompt students to reflect on Valentin and Suxing’s research, and tasks them to mamke a model of hydrogen atoms. • The PowerPoint reiterates the key points in the article and includes further talking points. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
How were the chemical elements born?
Futurum_CareersFuturum_Careers

How were the chemical elements born?

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Chemistry and Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Maria Lugaro, a nuclear astrophysicist of the Konkoly Observatory in Hungary. She is working on the RADIOSTAR project, investigating radioactive nuclei and the clues they left behind in meteorites. • This resource also contains an interview with Maria. If you or your students have a question for her, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Maria will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Maria’s research, and challenges them to build their own spectrometer. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Astrophysics at the Etelman Observatory
Futurum_CareersFuturum_Careers

Astrophysics at the Etelman Observatory

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Physics and Engineering. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resources introduces The Etelman Observatory in the US Virgin Islands, an establishment focused on educating a new generation of students in physics, astronomy and engineering. • This resource contains with interviews with Dr Orange and Dr Morris who lead the observatory. If you or your students have a question for them, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Dr Orange or Dr Morris will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Dr Orange and Dr Morris’ work, and links for them to find out more about the observatory. • The PowerPoint reiterates the key points in the article and includes further talking points. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Astrophysics: Searching the skies
Futurum_CareersFuturum_Careers

Astrophysics: Searching the skies

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Brad Netwon Barlow of the Culp Planetarium and High Point University in the US, who is delving deeper into space to hunt for a strange type of star called a hot subdwarf. • This resource also contains an interview with Dr Barlow. If you or your students have a question for him, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Dr Barlow will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Dr Barlow’s research and includes a link to avirtual tour of the planetarium. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
The huge potential of nanoscience
Futurum_CareersFuturum_Careers

The huge potential of nanoscience

(0)
Suitable for 14 to 19-year-olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Yashaswi Nalawade who is currently working on her PhD in Professor Jonathan Coleman’s Laboratory at Trinity College in Ireland. The team is working on the synthesis of low-dimensional nanostructures which will help usher in the next generation of nanotechnology across a range of fields. • This resource also contains an interview with Yashaswi. If you or your students have a question for her, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Yashaswi will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Yashaswi’s research and includes a link to a TedX Talk given by Professor Coleman. • The PowerPoint reiterates the key points in the article. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Quantum science: Investigating diamond colour centres
Futurum_CareersFuturum_Careers

Quantum science: Investigating diamond colour centres

(0)
Suitable for 14-19-year olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM/physics clubs and at home. This resource links to KS4 and KS5 Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Lachlan Rogers from the University of Newcastle in Australia. Lachlan works on a project that focuses on diamond colour centres. They are one of the most promising means of enabling the development of various quantum technologies that will change the world. • This resource also contains an interview with Lachlan about his career path. If your students (or you) have questions for Lachlan, you/they can send them to him online. All you need to do is to go to the article online (see the Futurum link below), scroll down to the end and type in the question(s). Lachlan will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Lachlan’s research and challenges them to think about the impact of quantum science. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
From basic quantum science to new technologies
Futurum_CareersFuturum_Careers

From basic quantum science to new technologies

(0)
Suitable for 14-19-year olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM/physics clubs and at home. This resource links to KS4 and KS5 Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Thomas Volz and the Quantum Materials and Applications Group in Australia. Thomas is engaged in a variety of quantum research projects, typically involving quantum emitters and light. His studies will help understand various materials, their fundamental behaviours and suitability for a range of technological applications that will change the world. • This resource also contains interviews with Thomas and MRes student Lyra Cronin about their career paths. If your students (or you) have questions for Thomas or Lyra, you/they can send them to the researchers online. All you need to do is to go to the article online (see the Futurum link below), scroll down to the end and type in the question(s). Thomas or Lyra will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Thomas’s research and challenges them to think about the impact of quantum science. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Biophysics: controlling microbial communities
Futurum_CareersFuturum_Careers

Biophysics: controlling microbial communities

(0)
Thank you for downloading this free resource. Let us know how we are doing and leave us a review. Suitable for 14-19-year olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 biology, physics and chemistry. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Professor James Boedicker, a biophysicist from the University of Southern California in the USA. James investigates the interactions between bacteria. He hopes that scientists will be able to control the activity that occurs in microbial communities, ensuring that microbes will be helpful to society. • This resource also contains an interview with Professor James Boedicker. If you or your students have a question for him, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. James will reply! • The activity sheet provides ‘talking points’ (based on Bloom’s Taxonomy) to prompt students to reflect on Professor James Boedicker’s research and challenges them to consider the importance of biophysics. This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!
Geophysics: Sub-hourly sea level oscillations
Futurum_CareersFuturum_Careers

Geophysics: Sub-hourly sea level oscillations

(0)
Thank you for downloading this free resource. Let us know how we are doing and leave us a review. Suitable for 14-19-year olds (secondary and high schools, and college), this article and accompanying activity sheet can be used in the classroom, STEM clubs and at home. This resource links to KS4 and KS5 Geography and Physics. It can also be used as a careers resource and links to Gatsby Benchmarks: Gatsby Benchmark 2: Learning from career and labour market information Gatsby Benchmark 4: Linking curriculum learning to careers • This teaching resource explains the work of Dr Jadranka Šepić, a geophysicist based at the University of Split in Croatia, who is investigating sub-hourly sea level oscillations and what they might tell us about rising sea levels. • This resource also contains an interview with Dr Šepić and insights into how to become a geophysicist. If you or your students have a question for her, you can submit it online – go to the article using the Futurum link below and scroll to the bottom of the page. Dr Šepić will reply! This resource was first published on Futurum Careers, a free online resource and magazine aimed at encouraging 14-19-year-olds worldwide to pursue careers in science, tech, engineering, maths, medicine (STEM) and social sciences, humanities and the arts for people and the economy (SHAPE). If you like these free resources – or have suggestions for improvements –, please let us know and leave us some feedback. Thank you!